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Abstract. The explosion seismic source function is the potential
which satisfies the spherical P-wave equation. It is completely de-
scribed by four properties. They are the steady-state value, roll-off,
overshoot, and corner frequency. In one approach to describing the
potential, the spectral roll-off is specified and the other properties are
determined by fitting the data at prescribed times. In a variation of
this approach, the roll-off is specified by assuming a radial stress of a
known form is applied uniformly over a spherical surface, located at
a range where the motion is assumed to be linear. In this review, it
was found that of the four properties, less uncertainty exists about
the steady-state value and the corner frequency than about the other
two. A major problem has been scaling the results from one yield
to another. New results are presented that show that, when the geo-
physical properties of the shot point are taken in account, cube-root,
scaling of the yield is appropriate for the steady-state value and the
corner frequency, i.e., yield to the first and one-third powers, respec-
tively. The new results also suggest that previous assumptions about
the form of the applied radial stress are probably not appropriate.
Finally, chemical and nuclear explosions appear in the new results
to be indistinguishable, suggesting that experiments using chemical
explosions could aid in reducing the remaining uncertainty in the
seismic source function properties.

I. Introduction

In his review of seismic source models for underground nuclear ex-
plosions, Massé [1981] lists four unanswered questions and concludes
from these that the seismic source for an underground nuclear explo-
sion remains poorly defined after two decades of study. The third
of Massé’s questions, “What is the seismic source-time function for
an underground nuclear explosion?” is the subject of this review.
Rodean [1981] also found no consensus regarding the source function
among seven papers that he reviewed and stated that there is dis-
agreement about the far-field high-frequency displacement spectrum
and about the overshoot in the source function. Therefore, as the
fourth decade of underground nuclear testing begins, it is appropri-
ate to re-visit some of this early work, to re-evaluate the conclusions
of a decade ago, and to discuss some promising recent results that
may lead to a consensus.
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This review begins with a discussion of the analytic models for the
seismic source function of an underground explosion; considered are
those with an instantaneous rise-time, with a finite rise-time, with no
steady-state value, and with a steady-state value. Next, the proposed
scaling laws are discussed. It concludes with a regression analysis of
the relationships of the seismic moment and corner frequency param-
eters to the cavity size.

II. The Vibrating Sphere Problem: Assumptions and Definitions

In the vibrating sphere problem, an explosion is modelled at and
beyond some critical distance where the material behaves elastically
by a radial stress applied uniformly over a spherical surface. The
spherical surface which separates inelastic from elastic response has
been called the equivalent cavity by Sharpe [1942] and the equiva-
lent radiator by O’Brien [1960], while the range to this surface has
been called the elastic radius by Tokséz et al. [1964]. The solution
of this problem is given below in terms of a potential which satis-
fies the P-wave equation. The description of the P-wave potential
is the basic goal of the proposed explosion source models (Table 1).
Two approaches have been taken to describe this P-wave potential.
In one, the potential is described by approximating its time history
with a parametric model evaluated at key times. In the other, the
form of the radial stress is assumed to be known and its parameters
are determined from key aspects of spectral data. While these ap-
proaches are equivalent, the second requires a more detailed physical
knowledge. It is worthwhile, therefore, to begin with a review of the
vibrating sphere problem.

The solution for this problem has been given by several authors:
Jeffreys (1931, 1971, 1976]; Sharpe [1942]; Blake [1952]; Latter et al.
[1959]; Cagniard (translated by Flinn and Dix [1962]); and Grant
and West [1965]. Cagniard’s derivation using Laplace transforms to
simplify the notation will be followed here. In spherical coordinates
the radial displacement and stress are given by
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respectively, where A and p are the Lamé’s constants, « is the com-
pressional wave speed, and ¢ is the potential that satisfies the spher-
ical wave equation \
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The general solution of the wave equation for an expanding spher-
ically symmetric disturbance is given by
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TABLE 1. Proposed Source Models

High-
frequency Initial Final Radial
Reference Data sy asymptore motion value stress
RP

1. Toksoz, Regional -—3 ks 2 5 4 noy=0 0 Oy =-PyteElp()
Ben-Menaham, Rayleigh waves P(s™+ In0es + 0S) (s +)
and Harkrider [1964]

5
2. Haskell [1967] Free-field V.. (“:: bb)s (1) 14 {(0)=0 V. Not specified (4)
SRP
3. Mueller [1969] Near-regional - 2 2 no) =0 0 O = —Poe Mt u(y
p(s? + Z‘Emcs + ol +a)
P
RP,(s + pow))

4, Mueller and Near-regionat L 12 uo) =0 Vo O =
Murphy [1971]; p(st+ ZEmcs +02)(s + v)) [P, - Pple O+ Polu(t)
Murphy [1977]

3

5. von Seggern and Teleseismic short- Vo (%sf;? 2) 2 pnoy=0 V.o Not specified (4)

Blandford [1972) period P-wave
' +1

6. Helmberger and Long-period P- and Mcc”) fa) dependson 0 Not specified (4}

Harkrider [1972] Rayleigh waves (s +m)
4

7. Helmbergerand Local P-wave V.. % 3 s 1(0)=0 V.. Not specified (4)
Hadley [1981]

8. Denny and Free-ficld 00, 7 1(0)= 0 Not specified (4)

. Denny a ree-fiel - = n ol specifi
Goodman [1990] and local Yo+ mags v ol + o)) g v -

(1) a=(24 B + 1)k% and b = k in Haskell’s notation.

(2) a=(1-2B)k? and b = k in von Seggern and Blandford notation.
(3) a= (6B + 1)k and b = k in Helmberger and Hadley notation.

(4) Not specified by reference but may be derived from cquation (6).

$rut) = —24(7), @

where ¥ is determined once the radial stress, o,,, at r = R is specified
and 7 is the reduced time, r =t — (r — R)/a, . According to Rodean
[1981], the function ¥ was first called the reduced displacement po-
tential or RDP by Werth et al. [1961] because it is dependent on just
the reduced time variable. Substituting (4) into (2), and taking the
Laplace transform with respect to 7, the radial stress is then given
by 2 2
b=~ L + s 1 2, %)
r ar r
where p is the density and 3 is the shear wave velocity. With &,
specified at some range R, the RDP is from (5)
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where the bar denotes the Laplace transformation, n = g/e, w, =
28/r, and R is greater than or equal to the elastic radius.

For a step in pressure, p(t) = Pyl/(f) where Py is the amplitude
of the pressure applied to the inside of a spherical surface at r = R
and U(t) is the Heaviside step function, i.e. U(t) =1 fort > 0 and
U(t) = 0 otherwise, the radial stress is given by

Gor = —Pofs. )
In this case, (6) becomes

- PyR*u?

)
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(8)

where w, = 28/R. The initial- and steady-state values, ¥g and ¥,
respectively, of the inverse of (8) can be readily evaluated from the
initial- and final-values theorems, Cheng [1959]. The final-value the-
orem states that lim{f};o = fim{sf},_.g and the inittal-value the-
orem states that lim{f}._o = lim{sf}, ., where f is an arbitrary
function. Thus, ¥ and 4, are 0 and Py R3/4y, respectively. The in-
verse solution to (8) can be found in any table of Laplace transforms,
e.g., Baternan [1954], and is
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where @ = nw,, b = we\/1 — 1%, and 8 = tan~!(b/a) and the initial-
and steady-state values are as expected. Rodean [1971] illustrates
the results for this and three other cases of radial stress.

Equations (8) and (9) are well known in the engineering fields.
In mechanical engineering, they describe a simple mass suspended
on a spring: w, is the undamped circular frequency (27 f) of oscilla-
tion, b is the damped circular frequency, and 7 is the damping factor.
Gurvich [1965] described (6), (8) and {9) in terms of a resonance filter.
In fact in electrical engineering, they describe a low-pass filter whose
order is determined by the number of the roats of the numerator or
denominator of the rational polynomial (8), whichever is larger. The
poles are the roots of the denominator and the zeroes are the roots
of the numerator. In general, the RDP (6) is the result of applying
a second-order low-pass filter to the radial stress. Thus, the order of
(6) is the number of poles of the radial stress plus two. In the case
of a step in radial stress (8), for example, the RDP is a third-order
low-pass filter with 3 poles and no zeroes.

In the seismic source problem, the damping factor in terms of
Poisson’s ratio, v, is

1-2v

= m (10)

As Poisson’s ratio ranges between zero and one half, 17 ranges between
V/2/2 and zero. This range of damping means that (%), beginning at
zero, rises to a peak at 7 = 7/b and then dies out to a steady state
value of ;. In other words, it overshoots the final value and then
oscillates with decreasing amplitude about it. The amount of over-
shoot, i.e. the ratio of the peak to the final value, is determined by the
damping and increases as 7 decreases. In mechanical engineering, this
response is described as under-damped and, in electrical engineering
terms, as a good-to-poor oscillator depending on the damping.

The derivative of ¢ is called the reduced velocily potential (RVP)
and is a more convenient function to work with than is the RDP.
This is due to the properties of its spectrum and to the fact that it
is proportional to the far-field displacement. These features are dis-
cussed below. In spite of these more convenient features of the RVP,
the RDP is commonly called the seismic source function.

For an RDP with a non-zero final value such as (8), the modulus of
the spectrum of the transformed RDP (| ¥ |s=i2-) is infinite at f = 0
but that of the transformed RVP (|s|,_;,,,) is finite at f = 0 and
is equal to . The modulus of the transformed RVP is, therefore,
commonly plotted instead of that of the RDP. From such a plot
four basic source function characteristics {seismic moment, corner
frequency, overshooi, and roll-off) can, in principle, be estimated.
The seismic moment for explosions, introduced by Miller [1973] and
Aki et al. [1974], is

Mo = dmpa‘es. (11)

The corner frequency, f., is the frequency where the transformed
RVP’s low-frequency asymptote intersects its high-frequency asymp-
tote. From (6), it can be seen that the RDP always has a corner
frequency, even in the simple case of an impulse in radial stress. The
roll-off is the exponent of the high frequency asymptote (f—o00) of
the transformed RVP or, equivalently, of the far-field displacement
spectrum. The roll-off is equal to the difference between the number
of zeroes and the number of poles. In (8), the corner frequency is the
same as the boundary condition eigenfrequency, 1.e. the magnitude of
the complex pair of poles specified by the boundary condition divided
by 27, fo = we/27. The roll-off, in this case, is ~2.

It should be noted that the boundary condition eigenfrequency
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is, in general, not the same as the corner frequency. For example,
Denny and Goodman [1990] have shown that for the nuclear explo-
sion SALMON, (f.)r=gr. < fc, where R, is the elastic radius. In this
case, the corner frequency was determined by the radial stress.

The fact that the displacement is proportional to the RVP at suf-
ficiently large ranges (called the far-field) is readily shown as follows.
From (1) and {4), the transformed radial displacement, #,, is given
by

i = i(s+%). (12)

ar

The contribution of the term, (s + £), in (12} is important only for
ranges (called the near-field) where r is not much greater than o/w,,
where w, = 27 f.. As the range increases, afr becomes negligible
compared to w. and s + afr ~ s so that the far-field transformed
displacement, @;;, becomes

_ s¥
by oo (13)

Thus, the spectrum of the far-field displacement is proportional to
the transform of the derivative of the source function.

Finally, the far-field transformed kinetic energy radiated per unit
surface arca by the vibrating sphere, K, is [Aki and Richards, 1980,
page 127)

sEy = %pm‘)z, (14)

where v is the transformed particle velocity. The total energy radi-
ated, £, is then, by Parseval’s theorem

1=

Er = E’-/ #(iw) o (iw)* df, (15)
27 J_ o

where the asterisk denotes the complex conjugate. For a step function

in radial stress (15) becomes with the use of (13), (8), and (11)

n? fo M3

Er = .
T 2npa®

(16)
It can also be shown, in other cases where the transformed RVP’s roll-
off is steeper than -2, that the energy is still proportional to f3MZ.

III. The RDP: Review of Experimental Results

There has never been a clear relationship established between
source functions determined from the close-in (< 10 km) data and
the source function for teleseismic data. The concern has been that
the telesetsmic observations depend on the medium properties be-
low the source volume and within perhaps several wavelengths of the
working point (i.e., the detonation point), while the close-in observa-
tions sometimes only sample a very narrow aperture above or to one
side of the working point and within a range comparable to perhaps
one teleseismic wavelength. Efforts to establish such a relationship
will be reviewed in this section. Three of the four source function
characteristics identified above will be reviewed in this section; the
fourth (corner frequency) will be addressed in the next section. The
question of the steady-state value of the source function will be dealt
with first, followed by the roll-off and the overshoot. Of the three,
the steady-state issue seems to be the best and the overshoot the
least well understood.

A. Steady-Stale Value

As pointed out above, (6} shows that the source function is a
low-pass version of the applied radial stress. Therefore, if the radial
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stress has a steady-state value, the source function also has one. In
the following the observations recorded in the literature are summa-
rized. Some anthors refer to radial stress while others write of the
source function.

Brune and Pomeroy [1963] were the first to infer the character
of the explosion source function from regional seismic data (100 to
1000 km). They studied the radiation patterns and the phase spec-
tra of Rayleigh waves. Explosions in alluvium and tuff were found to
have a characteristic explosion radiation pattern and to be consistent
with the phase of a step in radial stress. Unfortunately, a different
conclusion was reached by Toksdz et al. [1964] who analyzed long-
period Rayleigh wave data also taken at regional distances. After
removing from the data the contribution of the path and recording
instrumentation, Toksoz et al. concluded that a radial stress of the
form o, = —Pote=¢'U/(t), where £ is an arbitrary parameter, fit the
data better than did a step function. Thus, a controversy began.
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Fig. 1. Reduced displacement potentials. The data in this figure
are from Werth and Herbst [1963], Fig. 2. All have an overshoot
except tuff. Murphy [1979] shows the results from another gage,

where a surface reflection was not a problem, on the same experiment
(RAINIER) with a significant overshoot.

1000

The first experimental data, in the form of RDP’s, were reported
by Werth and Herbst {1963]. The data, reproduced in Figure 1, were
taken in the free-field from nuclear explosions in tuff (RAINIER),
alluvium (FISHER), granite (HARDHAT), and salt (GNOME). To
be in the free-field, the gages must be buried in the medium deep
enough so that the compressional wave is recorded without interfer-
ence of surface reflections. As shown in Figure 1, all four RDP’s rise
to a maximumn (overshoot) and then decay to a steady-state value.
Berg and Papageorge [1964] fit the RDP at 398 m on GNOME with
a step in radial stress, obtaining only a fair fit to the data. Haskell
[1967] proposed a general model (Table 1) to describe the overshoot
and steady-state value of all four RDP’s. Unfortunately, the dura-
tion of the free-field data is short as seen in Figure 1 and noise in
the signal makes computation of the steady-state value difficult and
introduces uncertainty in the result. For this reason and the source

volume sampling problem described above, the relationship of free-
field estimates of the source function’s steady-state component to
teleseismic and surface-wave signals became a cause for concern.

Liebermann and Pomeroy {1969] and Molnar et al. [1969], study-
ing the M, /m, discriminant, concluded that a plausible explanation
for the discriminant’s success is that the source function for an earth-
quake has a steady-state value while that for an explosion does not,
implying that the radial stress for an explosion is a decaying pulse of
the form given by Toksoz et al. [1964]. Savino et al. [1971], studying
Rayleigh waves from earthquakes and explosions from the Western
US, the Aleutians, Novaya Zemlya, and Central Asia, came to the
same conclusion. Mueller [1969] modelled the spectra of seismic data
taken at near-regional distances (<200 km) from several explosions at
the Nevada Test Site {(NTS) using a simple exponentially decaying ra-
dial stress model with seemingly satisfactory results. After studying
both short- and long-period data, Helmberger and Harkrider [1972]
found that the Haskell model was adequate for short-period data but
not for predicting the long-period observations. To overcome this
deficiency, they proposed a model (Table 1} with no steady-state
component. Thus, uatil 1972, many investigators clearly favored no
steady-state value.

Others were unsure about the nature of the long-period behavior
of the source function. Molnar [1971], though finding the spectra for
teleseismic P-waves from the explosions JORUM and HANDLEY to
decrease rapidly with period (o< T72) in the range of 1 to 20 sec, con-
cluded that this could be due either to the modulating effect of the
surface reflection, pP, or to the explosion source function. He also
found that the data were not of sufficient quality or quantity to rule
out any linear combination of impulse and step function components
in the source function, unless other data demonstrate that the sur-
face reflection does not have a major effect on the observed spectrum.
If this were true, he concluded the data would then prove that the
source function is primarily an impulse. Wyss et al. [1971] undertook
a study similar to that of Molnar using teleseismic P-wave data from
the Amchitka explosions, MILROW and LONGSHOT, and four shal-
low earthquakes in the Aleutian Islands and came, essentially, to the
same conclusions. Miiller [1973], introducing the idea of the seismic
moment for explosions, found that strain measurements made on the
explosion BENHAM at local distances (28-29 km) were consistent
with a step function, but he was puzzled by the apparent long-period
P-wave explosion spectra behavior that appears to be consistent with
an impulsive source noted by other investigators.

While the case against a steady-state value became increasingly
clouded, the argument for a steady-state value slowly became more
convincing. Haskell [1961] solved the quasi-static problem of an
expanding cavity in a plastic medium. This solution showed that
the far-field permanent displacement and, hence, the steady-state
value of the source function are dependent on the final cavity size.
Von Seggern and Lambert [1970], studying spectral ratios of Rayleigh
waves of both earthquakes and explosions between periods of 10 and
50 sec, found them to be consistent with Haskell’s model. Tsai and
Aki [1971] studied the Rayleigh waves from 10 small and 3 large
underground explosions at NTS recorded at far-regional distances
(940 and 2405 km). They found the results to be in excellent agree-
ment with Haskell's model. Mueller and Murphy [1971] used the
quasi-static idea of computing the final displacement and, hence, the
RDP under the assumption of incompressibility from the cavity size
in their proposed source model (Table 1). Aki et al. [1974] also en-
dorsed this line of reasoning and argued that a nuclear explosion must
have a steady-state value. They also considered a spherical shell sur-
rounding the non-elastic zone of an explosion, explaining that this
shell stretches during the passage of the shock waves and remains
stretched because part of the strain is plastic. The source function
for explosions must then be a step function for long periods since



the relaxation time for plastic deformation is much longer than the
seismic periods; indeed, since explosions create permanent cavities,
it is infinite. Burdick and Helmberger [1979], in modelling teleseis-
mic short- and long-period body waves, chose not to use the model
of Toksoz et al. [1964], Mueller [1969], or Helmberger and Harkrider
[1972] since these models do not have a step component and, in their
words, “Some de¢ component should realistically be expected if a cav-
ity is formed by the explosion.” As seen in Table 1, this argument
apparently was powerful enough for two investigators to change their
opinion; see Mueller [1969], Mueller and Murphy [1971], Helmberger
and Harkrider [1972], and Helmberger and Hadley [1981]. And, fi-
nally, Patton [1982] applied the method of Brune et al. [1960] to
4 NTS explosions and showed clearly that the spectral phases of the
Rayleigh waves are consistent with a step function.

Having given a very persuasive argument for a steady-state value,
AKi et al. [1974] then argued that the seismi¢c moment as estimated
from free-ficld data is high by a factor of 3 as shown in Figure 2a,
the underlying assumption being that the seismic moment should be
independent of the source media. However, this assumption is not
necessarily true and the apparent discrepancy may not be as bad as
Figure 2a shows. Murphy [1974] explained some of the variance as
being due to differences in the source properties. Assuming that the
higher yield explosions are generally at Pahute Mesa while the lower
yield ones are at Yucca Valley, he derived a moment-magnitude re-
lationship, Figure 2b, for each region based on typical P-wave sound
speeds and densities, using the incompressibility relationship

oo = RY/3, (17)

where R, is the cavity radius. In addition, Denny and Goodman
[1990] have shown that the SALMON moment (the larger magnitude
of the two salt data points) should be lower by 40%, bringing it rea-
sonably close to the surface wave line in Figure 2a. The SALMON
datum was over-estimated because the estimate was made from data
taken in the non-linear zone which is easily identified by a peak par-
ticle velocity spatial rate of decay exceeding that expected from (13)
for linear motion, i.e., r~!, As shown by Denny and Goodman, es-
timates made in this region are too large due to large permanent
displacements associated with plastic yielding. This is probably the
case for the other explosions in hard-rock (e.g. granite, salt, dolomite,
shale, etc.}) as well. This samne conclusion was also reached by Bache
[1982]. Furthermore, Werth and Herbst [1963] do not provide any ev-
idence that the measurements for the four explosions they reported
are in the linear region. A cursory perusal of the peak particle ve-
locity data given by Perret and Bass [1975] suggests, that of the ex-
plosions in Aki’s table, the measurements for GNOME, HARDHAT,
HANDCAR, and GASBUGGY were probably in the non-linear zone,
while the RAINIER and FISHER measutements may have been in
the linear zone.

From the foregoing it seems possible that differences between
close-in and regional surface wave observations can be resolved. An-
other indication that this might be true is given by Murphy (this vol-
ume; see Figure 5.) In Murphy’s Figure 5, the ratio of the regional
surface wave moments of Aki et al. [1974] to the moment computed
from (17) is shown. The explosions in Yucca Valley seem to be more
consistent than those at Pahute Mesa. As suggested by Patton (this
volume), this apparent discrepancy may be due to a systematic differ-
ence in the release of tectonic energy by the higher yield explosions,
typically located at Pahute Mesa.

B. Roll-off

The asymptotic behavior of the RVP at high frequencies depends
on the form of the radial stress. From (8), it can be seen that the
roll-off will be steeper than -2 if the transform of the derivative of
the radial stress has more poles than zeroes.
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Fig. 2. Seismic moments vs magnitude. (a) This is Fig. 1 of Aki
et al. The moments on the left-hand side were computed from free-
field data while those on the right-hand side were computed from
long-period surface wave data. Based on this figure Akiet al. thought
that the free-field data were high by a factor of 3. (b) This is Fig. 1
of Murphy [1974]. Some of the variance can be accounted for by dif-
ferences in the source media. The upper line is for Pahute Mesa and
the lower one is for Yucca Flats. Some of the discrepancy is probably
also due to data taken in the inelastic region. Such estimates from
these data are expected to be high.
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In the relatively simple case of a step function radial stress, the
order of the model given by (8) is 2 and the roll-off is -2 since it has
no zeroes. More complicated radial stresses, requiring higher order
models, can also have a roll-off of -2. Models 3 and 4 in Table 1 are
examples of third order models with -2 roll-offs. In model 3, Mueller
[1969] assumed an exponentially decaying radial stress,

Orr = —Poefan(")x (18)

while in model 4, Mueller and Murphy {1971] assumed that the radial
stress is a combination of a Heaviside step function and an exponen-
tially decaying term,

Orr = —(Po + Pre”“'T)U(T). (19)

The transformed derivatives of the radial stresses of (18) and of (19)

are
S

§Opp = _Pos-ka’ (20)
and {4 P /P
sy = Py Lt P/P)s e (21)
§+w)

respectively. Both (20) and (21) have one pole and one zero. There-
fore, even though the order for both RVP’s is three, the roll-off is
-2. This is true since the high-frequency asymptotes of the moduli of
(20) and (21) are constants, Py and Py + Py, respectively.

Haskell’s model (2, Table 1) is an example of a model where the
implied radial stress has more poles than zeroes. This model was
derived by requiring acceleration to be continuous at = 0. Ap-
plication of (13) and the initial-value theorem to this model shows
that it is, in fact, continuous to acceleration and that its roll-off is -4.
Similarly, models with roll-offs of -3 and -2 are continuous at r = 0
to velocity and displacement, respectively.

Von Seggern and Blandford [1972] noted that Haskell’s model,
when scaled up in yield, failed to satisfy the spectral ratios of short-
period teleseismic data from the three nuclear explosions at Amchitka.
They were able to obtain a better fit of the spectral ratios using model
5 (Table 1) with a roll-off of -2. This model was obtained by reducing
the order of Haskell’s model by two.

Peppin [1976] computed 140 P-wave spectra of explosions, earth-
quakes, and explosion-induced aftershocks, all within the NTS and
all from wide-band seismic data at local {<30 km) and near-regional
distances (200 to 300 km). From these he concluded that the far-field
source spectra decay at least as fast as frequency cubed; a roll-off of
-3 or steeper.

Helmberger and Hadley [1981) showed that a model continuous
only to displacement produces an unrealistic discontinuity in syn-
thetic seismograms and, therefore, is unsatisfactory. Their model (7,
Table 1) is continuous to particle velocity and was obtained by re-
ducing the order of Haskell’s by one, for a roll-off of -3. Using this
model, Lay et al. [1984] satisfactorily modelled the teleseismic data
from the Amchitka nuclear explosions. The model’s roll-off of -3 did
not cause any problems in the 0.5- to 3-Hz range as found by von
Seggern and Blandford [1972] with Haskell’s original model. The dif-
ference was not in the change of the roll-off, but in the fact that Lay
et al. used the empirically obtained corner frequencies of Helmberger
and Hadley [1981]; whereas, von Seggern and Blandford simply cube-
root scaled those obtained by Haskell for granite.

Denny and Goodman [1990], borrowing electrical engineering sys-
tem identification techniques, modelled the free-field data and the
spectral ratios of local (10 to 111 km) seismic data from the nuclear
explosions, SALMON and STERLING, in salt with a rational poly-
nomial. They found that a third-order model (Table 1) was required
to adequately describe the rise-time observed in the free-field data
and the high-frequency roll-off of -3 observed in the spectral ratios of
the two explosions.

Of the models of Table 1, four of the six earliest ones (1, 3, 4,
and 6) were obtained by specifying the radial stress. The others were
determined by approximating the shape of either the reduced dis-
placement potential (models 2, 5, and 7) or the reduced acceleration
potential (model 8). The radial stress implied by these models can be
determined from (5) for any specified range. The range of most inter-
est, of course, is the one where the motion first becomes linear; thus,
equating {(6) to model 8 (Table 1), the radial stress for SALMON at
the elastic radius can be estimated by

(82 + 2newes + wiwiuy
R.(8? + 2ncwes +w2)(s + wr)’

Orr = Yoo (22)
where ¥, = 2200 m®, 5, = 0.55, n. = 0.6, p = 2200 kg/m?, and
we, wy, and w, are 36.4, 29.4 6.3 rad/sec, respectively, as determined
by Denny and Goodman [1990]. To estimate the elastic radius some
independent information must be used. For the SALMON explo-
sion, Denny and Goodman estimated the location of the elastic ra-
dius by extrapolating the peak particle velocity data for both the
SALMON and the STERLING explosions to the range where the
linearity threshold is crossed. In this case, threshold is based on the
amplitude of the elastic precursor. (The elastic precursor is thought,
Glenn [1990], to be the result of strain hardening and it propagates,
in this case, in the inelastic region with an amplitude equal to the
threshold value of about 0.3 m/s and at P-wave speed, ahead of a
larger, slower plastic wave. The elastic precursor and the plastic wave
ultimately become a single wave travelling at P-wave speed when the
particle velocity falls below the threshold.) Using this procedure, an
elastic radius of about 800 m was found. The corresponding radial
stress computed from (22) is as shown in Figure 3 and looks like a
damped sine-wave superimposed on a small step function.
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Fig. 3. Radial stress. This is Fig. 22 from Denny and
Goodman [1990] showing the estimated radial stress at the elastic
radius for SALMON. Note that the final steady state value of about
2 bars occurs outside the time frame shown and from (6) the RDP is
a low-pass version (f.~1Hz) of this signal.

An interesting, worthwhile exercise would be to derive the equiv-
alent radial stress for those few explosions where free-field radial par-
ticle velocity measurements were made at several ranges. For those
explosions whose data are only in the non-linear zone, the results
would obviously be fictitious but their progressive change in shape
with range should be enlightening.

C. Overshoot

The free-field data of Werth and Hetbst [1963], Figure 1, show
a significant overshoot for both hard-rocks, granite and salt; how-
ever, for the porous rocks the data show a significant overshoot for
alluvium but not for tuff. Subsequent studies have produced con-
tradictory results with the only point of agreement being the result
for alluvium. The alluviom data of Werth and Herbst is consistent
with that of Perret [1971] for the MERLIN explosion and of Mur-
phy and Bennett [1979) for the FISHER and the MERLIN explo-
sions. Murphy and Bennett also studied free-field data for the ex-

plosions RAINIER, MUDPACK, and DISCUS THROWER in tuff.



The DISCUS THROWER data were taken close to the tuff/paleozoic
interface making the signals too complex to use. For RAINIER, they
found, for a gage most likely in the linear zone and also less likely
to be affected by a surface reflection than the one used by Werth
and Herbst, an overshoot of about 2 to 1. MUDPACK also showed a
significant overshoot. Finally, Denny and Goodman [1990] studying
SALMON found no significant overshoot for salt. Therefore, if the
salt and granite data, given by Werth and Herbst, are in error and
this is a strong possibility because the data in question were taken
in the non-linear region, then one might conclude that porous media
have a significant overshoot while non-porous media do not. The
conclusion for the porous media seems well established but the one
for hard-rock is more speculative.

Other contradictory observations have been made. Aki et al.
[1974] compared local data taken at NTS with long-period Rayleigh
wave data and concluded that a large overshoot in the source func-
tion, 4 or 5 times the residual value, is required to explain both sets
of data. Peppin [1976] concluded from his study of 140 explosions
and earthquakes that source spectra of explosions in tuff are flat from
0.2 to 1.0 Hz (no overshoot).

Burdick and Helmberger [1979] modelled teleseismic short- and
long-period body waves using synthetic seismograms and concluded
that the source function must have a substantial overshoot.
Helmberger and Hadley [1981] tried to deduce the overshoot param-
eter (controlled by the zero in the RDP) in their model from close-in
data recorded at 8 km on JORUM. The frequency parameter (k in
ref. 7, Table 1) was readily determined by the dominant period of the
data, but the overshoot parameter, B, could not be uniquely deter-
mined for two reasons. First, the arrival times of pP and/or related
slapdown phenomena are such that they arrive during the later half of
the direct P-wave and are superimposed on it; and second, the band-
width of the data is such that the zero in the Helmberger-Hadley
model makes an important contribution and cannot be separated
from thos.

Douglas and Hudson [1983] demonstrated that the main features
of the WWSSN seismograms shown by Burdick and Helmberger [1979]
and Helmberger and Hadley [1981] can be accounted for, with a source
with no significant overshoot. Reverberations in the crust at the
source and the receiver can account for most of the variations in the
observed Novaya Zemlya WWSSN LP seismograms shown by Burdick
and Helmberger [1979], making it impossible to draw any firm con-
clusions about the overshoot. Burdick et al. [1984] did essentially the
same analysis as Helmberger and Hadley [1981] but on the Amchitka
explosions, MILROW and CANNIKIN, using lacal data (recorded at
7 to 20 km). The Helmberger-Hadley [1981] model parameters were
evaluated for both explosions. They found, as others had, that the
overshoot parameter could not be resolved.

In the Mueller-Murphy model the zero is yield dependent, mak-
ing the overshoot also dependent on yield. In the previous section,
the low- and high-frequency asymptotes for this model were shown
to be Py and Py + P, respectively. The ratio of high- to the low-
frequency asymptote controls the overshoot; the higher the ratio, the
larger the overshoot. In the Mueller-Murphy model this ratio is a
proportional to h®°7W012 where h is the depth of burial and W is
the yield. This feature is contrary to that found by Lay et al. [1984]
who determined that the Helmberger-Hadley [1981] source model is
best fit if the amount of overshoot decreases with increasing yield or
depth of burial.

These contradictory results open the field for other interpreta-
tions. One possibility is that the overshoot is controlled by neither
the depth nor the yield. Depth of burial in all these models could be
Just a surrogate variable for some working point material property.
Then the overshoot could be independent of yield and depth and de-
pendent only on the working point’s material properties. Also, the
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effect of spall could mimic overshoot in far-field spectral observations
(c.f. Taylor and Randall [1989]).

1V. Scaling: Theory and Observations
A. Theory

Cube-root scaling comes from a simple energy, volume relation-
ship. For a given chemical explosive, its specific energy, i.e., energy
per unit mass of an explosion, is a constant so that its energy release
is simply dependent on the mass, or volume, of the explosive. For a
nuclear explosion, the volume of the fireball in air or of the vapor-
ized zone in the earth is proportional to the energy. The energy re-
leased by a nuclear explosion is called its yield and is given in kilotons
(1 kt = 4.2 x 10*2J) while the energy or yield of a chemical explosion
1s usually quoted in kilograms even though all chemical explosions
do not have the same specific energy. Since the units of volume are
length cubed, the yield is proportional to length cubed, or conversely,
length (I) is proportional to the cube-root of the yield (! o« W1/3).
Specific energy has the units of length divided by time, all squared
((i/t)?). Therefore, in order for the units of the specific energy to
be consistent, time must also be proportional to the cube-root of the
yield (t « W/3), where time refers to fireball or cavity growth. From
(8), the RDP is seen to have the units of volume while those of the
seismic moment are the same as energy. Therefore, both quantities
should scale as (i.e., be proportional to) the yield to the first power.
Frequency, obviously, should be inversely proportional to the cube-
root of the yield.

Care must be taken when scaling data. Amplitudes from narrow-
and wide-band data do not scale in the same ways and time can
not be scaled when recorded on narrow-band systems. Ouly time in
the source function can be scaled. Arrival times obviously can not
be scaled. Therefore, only reduced time from signals recorded by
wide-band instrumentation, i.e., bandwidth greater than the corner
frequency of the signal, and in the free-field can be scaled.

Insight into how ground motion scales with yield can be gained
from the problem of the vibrating sphere. For a step in applied
pressure, the far-field transformed displacement is obtained by sub-
stituting (8) into (13),

1/)00“"3
ar(s? + 2nw,s + w.2)’

l_ljf = (23)
At a fixed range, the only quantities in (23) that scale are ¥, and
we. Therefore, for low frequencies (f < w,/2r}, the ground motion
in all of its forms (displacement, velocity, and acceleration) is then
proportional to %« while for high frequencies (f > w./27) they are
proportional to ¥ew?. Thus, for low frequencies the ground motion
scales as the first-power of the yield while for high frequencies, it
scales as the cube-root of the yield. This result has been derived by
several investigators, e.g., O’Brien [1957,1960], Latter et al. [1959],
and Carpenter et al. [1962].

Broadband displacements and velocities, however, do not scale in
the same way. From (9} and (13), the broadband far-field displace-
ment is

_ Yooe
u

= ar(l_—r’z)me_arsin(bf), (24)

and the velocity is

v = l'bm%ﬂge“”'cos(b'r +6) (25)

ar(l — n2)1/2 ’
where 8 = tan~'(a/b). From (24) and (25), it can be seen that at
a fixed range displacements would be expected to scale as the two-
thirds power of yield and velocities as the one-third power of yield.
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This may seem like a contradiction, since the units of particle velocity
and displacement would indicate that the former should be indepen-
dent of yield and the latter should be proportional to the cube-root
of the yield. When viewed in terms of the scaled range, R/Wl/a,
however, there is no contradiction. Particle velocity is then seen to
be independent of yield and displacement is seen to be proportional
to yield to the one-third power while both are inversely proportional
to the scaled range. Free-field data are typically presented in this
form, e.g., Perret and Bass [1975].

Carpenter et al. [1962] used cube-root scaling of free-field data
from the RAINIER explosion to study the amplitude-yield scaling
question. They concluded that for most practical applications (mean-
ing narrowband recordings) it appears that a power law can be used,
although for very large charges (or high frequencies) the amplitude
will increase less rapidly than charge size and may even decrease.
This effect is due to the bandwidth of the recording instrument. For
small explosions the corner frequency would be above the frequency
of the peak response of the seismograph, but for larger ones the corner
would move closer until finally it would be below the peak response.
Similar results were obtained by Werth and Herbst [1963] and by
Berg and Papageorge [1964]. Thus, the amplitude measured on a
narrowband seismograph could be expected to be A o W?*, where b
ranges from 1.0 to 1/3. Since the seismic magnitude is proportional
to the log of the amplitude, m oc log A, then the seismic magnitude
is proportional to the log of the yield, m « & log W. If the corner
frequency of the signals are always greater than the frequency of the
peak response of the seismograph, as it is for the long-period WWSSN
seismograph, then the slope or exponent b would be expected to be
unity.

Mueller [1969] assumed that the medium “on the large” has low
tensile strength and that the limiting pressure is therefore in the
neighborhood of the overburden pressure in order to keep the medium
from going into tension and propagating cracks. Mueller and Murphy
[1971, Table 1] used this logic to infer from analysis of near-regional
and free-field data that the peak pressure, Py, is 1.5 times overburden,
i.e., P, = Po+ Py = 1.5pgh, where Py and P are the same as in (19),
h is the depth of burial and ¢ is gravity. They also assumed that
the peak pressure follows a power law in the inelastic region, P, «
(r/W3)="_ Equating these two relationships for the peak pressure,
they determined the elastic radius to be related to overburden as

follows
R, 1

Wi % (ogh)im (26)
Invoking the incompressibility argument, they found
4p R 4
Py = —(—=—)", 27
0= Re) (27

where the cavity radius, R, from empirical studies is given by R, =
cWO29p-0.11 = At low frequencies the Mueller-Murphy model pre-
dicts that o and, therefore, amplitudes should scale as W° 37 /a%-33,
while at high frequencies they scale as W1/3p0-583  Assuming that
the depth of burial scales as the cube-root of the yield, these scaling
laws become W76 and W9527 respectively.

It is worth noting that ground motion scaling at high frequencies
(f > f.) proportional to the cube-root of the yield applies only to
a model whose roll-off is -2. When applying cube-root scaling to a
model whose roll-off is -3, the spectral amplitudes at high frequencies
are found to be independent of yield; while for a model whose roll-off
is -4 such as Haskell’s, they decrease with yield. For a model with a
roll-off of -3 or -4 to have high-frequency amplitudes increasing with
yield the corner frequency must somehow be modified either through
some inherent depth dependence or through some material property
which changes uniformly with depth so that the corner frequency
would ultimately depend inversely on yield to some power less than

1/3 or 1/4, respectively.

Yield is not the only important property that determines the cor-
ner frequency. If the energy deposited by an explosion into the sur-
rounding material is a given fraction of the yield for a given matertal
then, by (16)

2 x pa®E/ME. (28)

As discussed above, Mueller and Murphy [1971] hypothesized that
the elastic radius, which by their definitjons is proportional to o/ f.,
is inversely dependent on the overburden as in (26). Thus, the cor-
ner frequency would be expected to be directly dependent on the
overburden and inversely dependent on the cube-root of the yield

12 o a*(pgh)*/"/W. (29)

In the real earth both density and wave speed tend to increase with
depth. Furthermore, the depth of burial of a given device is dictated
by containment requirements to be proportional to the cube-root of
the expected yield. Thus, both (28} and (29) predict that the cor-
ner frequency will decrease less rapidly with yield than predicted by
simple cube-root scaling.

B. Observations

1. Amplitude Scaling. Early experimental results seemed to sup-
port simple cube-root scaling. Gaskell [1956] performed several ex-
periments in clay using small chemical explosives. The cavity size
was found to be consistent with cube-root scaling, and the ampli-
tudes of refracted waves were found to be proportional to the weight
of the charge. O'Brien [1957, 1960] performed a regression analysis
on three sets of data taken on small chemical explosions to determine
the scaling exponent. The range of results was 0.88 to 1.12 with the
mean value of 0.994.18. Latter et al. [1959] found that at a Caltech
seismic station located 180 km from NTS the recorded amplitudes
were proportional to the first-power of yield.

Then the picture began to get clouded. O’Brien [1969] performed
many experiments in sandstone and clay using chemical explosives
with charge weights of 0.08 to 9.5 kg. Broadband measurements of
radial stress were found to be dependent on yield to the 0.55 power
in both materials, and a significant dependence on depth was also
found. In clay the peak stress was found to decay as A~93% and
the half-period as A~?3  In sandstone, peak displacements were
found to decay as A%%! and half-periods as A~"5!. Basham and
Horner [1973] studying about 60 explosions, found Rayleigh waves
to be proportional to the 1.2-power of yield from low yields to over
3 megatons. Springer and Hannon [1973] found the slope in the
magnitude-yield relationship for body waves to be slightly greater
than 0.6 at regional distances but to be almost 1.0 at teleseismic
distances, while for Rayleigh-wave data they found the slope to be
about 1.1. Murphy [1977] showed that the Mueller-Murphy model
with its depth dependencies is consistent with: 1) the observed yield
scaling exponents for large samples of NTS explosions below the wa-
ter table using near-regional broadband spectra, 2) the broadband
Rulison/Gasbuggy spectral ratio representative of explosions at very
different scaled depths in hard-rock, 3) regional Pn amplitudes from
NTS explosions and 4) both short-period and long-period teleseis-
mic P wave spectra observed from a large sample of Pahute Mesa
explosions covering the yield range from 155 to 1300 kt. Murphy
also noted that the observed long-period surface wave data are in-
consistent with the Mueller-Murphy model and suggested that there
are factors contributing to the long-period, teleseismic surface waves
which are not accounted for by the simple spherically symmetric
source (or isotropic) models.

Marshall et al. [1979] studied a total of 46 explosions and found
the slope for mg, a teleseismic body-wave magnitude, to be about
0.8 for US explosions below the water table in porous, saturated me-



dia and to be about 1.0 for US and USSR explosions in hard-rock.
The slope for the surface-wave magnitude was found to be about 1.0.
Larson [1982] found that the peak particle velocities measured in the
laboratory from small chemical explosions in salt models could be
cube-root scaled over 10 orders of magnitude of energy to those ob-
tained from the SALMON experiment.

Lay et al. [1984] studied the Amchitka explosions, which were
thought to have little tectonic release, so that long-period Rayleigh
waves could be used without bias. They found that the Helmberger-
Hadley [1981] source model is best fit if the long-period level of the
explosion potential, ¥oo, increases with yield, W, by %o, oc W%, or
with yield and depth by ., o W/h'/3.

Nuttli [1986] found that the magnitude-yield relationship had a
slope of about 0.7 for L, waves. Patton [1988], applying Nuttli’s
method to a different data set, found that the slope was 0.95+0.03
for explosions in dry, porous material and 0.80+0.02 in saturated,
porous material. Vergino [1989] found the slope to be 0.71 for 19 an-
nounced Soviet explosions. Vergino and Mensing [1990] found, after
correcting for gas porosity, the slope in the magnitude-yield relation-
ship to be 0.9 for a very large set of regional data for NTS explosions.

Finally, Patton {this volume) attempted to explain some of the
differences in the scaling. He studied two classes of non-tsotropic
sources for NTS explosions: tectonic release and explosion-driven
block motion. A non-isotropic source is one due to some non-
spherically symmetric explosion-induced phenomenon. The main
characteristic of tectonic release is that of strike-slip motions on faults
at shot level or deeper while that of block-driven motion is mainly
of vertical motion above the shot level, often in directions opposite
to the naturally occurring faulting in the Basin and Range. In this
analysis, he used fundamental and higher-mode surface-wave data
recorded at regional distances and estimates of the spall source to in-
vert the data into isotropic and non-isotropic components. From the
estimates of the non-isotropic components, he tentatively concluded,
pending further study, that there are two “fields” of explosions char-
acterized by different non-isotropic mechanisms so that there is a
reason for differences in scaling. For explosions above 300 kt, tec-
tonic release with strike-slip faulting is a major contributor while for
explosions below 300 kt block-driven faulting with reverse dip-slip
motions is the major contributor. The result of the inversion process
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for the isotropic component gave reduced variance in the moment
versus yield plots over those made without removing the spall contri-
bution. In addition, the yield scaling exponent for explosions below
the water table was reduced from about 1 to 0.84, i.e., closer to that
expected from Mueller-Murphy model.

From the foregoing, there seems to be some reason to believe that
the same scaling should apply to both long- and short-period data.
There also seems to be a consensus building that simple cube-root
scaling is not adequate in the real earth, though in the idealized world
of laboratory models, it probably applies. Thus, some depth depen-
dence such as in the Mueller-Murphy model is needed, but it is not
clear whether some source material property or properties could be
used to replace depth. And lastly, there seems to be a consensus that
there is no curvature in the magnitude-yield relationship as predicted
by Carpenter et al. and others. None of the investigations mentioned
above found a need for anything but a straight line.

2. Corner frequency scaling. To aid in characterization of the
source, Wyss et al. [1971] introduced the idea of source dimension
(source radius) to explosions, r, = cv/f, where c is a constant ex-
pected to be near unity and v is one of the elastic wave velocities. By
introducing a constant of proportionality between the decay constant
(wp in (19)) and the boundary condition eigenfrequency, Mueller
and Murphy [1971) obtained estimates of the elastic radius shown in
Figure 4a. In the case of SALMON, the Mueller-Murphy estimate
differs by about a factor of two from a recent estimate by a differ-
ent procedure. The elastic radius estimated by Denny and Goodman
[1990] is 460-520 m/kt!/3 while the Mueller-Murphy value is about
270 m/kt!/3, In contrast, the Denny-Goodman estimate of the source
radius (¢ = 1 and v = a) compares well with the Mueller-Murphy
estimate as shown in Figure 4b. These results were obtained by
removing the Mueller-Murphy constants of proportionality for tuff,
thyolite, shale and salt (1.5, 2.0, 2.4, and 4.5, respectively). The
variance in the Mueller-Murphy scaled elastic radius plot is seen to
be considerably greater than that in the scaled source radius plot.
The scaled source radius plot also shows remarkable agreement be-
tween different materials. The significance of this may be that the
mechanism that controls the generation of the corner frequency is
nearly material-independent but that the one that controls the elas-
tic radius is highly material-dependent. In either case, however, it is
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Fig. 4. Scaled radius vs overburden. (a) Elastic radius. (b) Source radius. (a) is Fig. 2 from Mueller and Murphy [1971]
and shows that depth or depth-related changes in shot-point material properties are important. Mueller and Murphy
presented their data as the elastic radius based on assumed constants of proportionality between the elastic radius and
the corner frequency. Removing assumed constant from their data results in (b) a reduction in the variance; the two

SALMON values are then nearly the same.
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apparent that depth or some depth-related property plays a signifi-
cant role.

As suggested above, the apparent depth dependence seen in
Figure 4a and 4b may be due to some other parameter and depth
is just a surrogate. Larson [1984] found in Nugget sandstone that
the particle motion was always outward and did not return when
the sample was unconfined but that it did return when confined. In
other words, in the unconfined case the particle velocity was always
positive and never negative as expected from (25). In salt, on the
other hand, no difference was observed; the motion behaved basically
as expected under both conditions. Clearly the corner frequency, one
of the parameters which controls the response in (25), is dependent
on the confining pressure for explosions in sandstone but not for salt.
Figure 5a shows that the shear sirength (ie., half the difference in
principal stresses) of salt is virtually independent of confining pres-
sure while that of Nugget sandstone (Figure 5b) varies nearly linearly
with confining pressure, suggesting that shear strength, not the con-
fining pressure, is the real controlling parameter. One can, therefore,
see that the corner frequency and the corresponding source radius
could appear to be depth-dependent for some materials.

The source radius is also dependent on the wave-speed which,
in general, increases with depth. Therefore, some of the trend, and
perhaps some of the variance in Figure 4a and 4b, may be due to
the wave speed. These observations are not to say that depth de-
pendence is not important. In fact, Lay et al. [1984] found that the
Helmberger and Hadley [1981] source model is best fit if the corner
frequency parameter, K, scales as predicted by the Mueller-Murphy
[1971] model. Clearly, the factors which control the corner frequency
are not well understood and mote work is needed.

C. Inferences from Dimensional Anelysis and Other Considerations

As indicated above, the cavity volume should be an important
scaling consideration. The same considerations that apply to cavity
size should also apply to crater volume. Therefore, the dimensional
analysis results of Chabai [1965] and others are worth reviewing.
Chabai identified four different sets of scaling laws. If the gravita-
tional field strength is not included in the dimensional analyses, then
cube-root scaling is obtained when an explosion is characterized by
either a mass dimension or by an energy dimension. If gravity is in-
cluded in the dimensional analysis, then cube-root scaling is obtained
for crater dimensions if the explosion is described by a mass dimen-
sion, but fourth-root scaling is obtained if the explosion is described
by an energy dimension. Thus, in the last case, ground motion at low

frequencies would be expected to be proportional to the three-fourths
power of yield and at high frequencies would be proportional to the
one-fourth power.

It was found experimentally that neither scaling law fit the crater
data. Chabai did a regression analysis on chemical explosions rang-
ing from 100 to 1,000,000 1b of TNT. He found that the data were
fit best when scaled by 0.310.02 power of energy. Baker et al. [1973;
chapter 11] studied Chabai’s data by combining the two basic di-
mensionless terms, W1/3/01/3d and W1/4/K*d where W is an en-
ergy dimension, d is the depth, K represents the dead weight of
the material, best measured by pg, and ¢ represents the material
strength. They found that the crater-radius, R., data were fit very
well by

R. w1/3 W1/4 2

— o ( X — e

d o3d © K14
They suggest that the material strength is best measured by pc?, an
easily determined quantity, but it could just as well be some other
measure. From this analysis, the authors concluded that neither the
gravitational effects nor the constitutive effects can be ignored. For
the seismic source function, this is an interesting result. It can be
seen from (30) that depth cancels out and that the volume scales as
yield to the 7/8 power. Thus, the volume has no explicit depth de-
pendence and the yield scaling is remarkably close to that commonly
observed for seismic amplitudes!

Working with small models in the laboratory, Larson [1984] found
that cavity volumes produced by explosions vary inversely with shear
strength and are dependent on confining pressure only to the extent
that the shear strength depends on confining pressure. In salt, for ex-
ample, the shear strength is independent of confining pressure, but in
Nugget sandstone it is nearly linearly dependent on it as shown pre-
viously in Figure 5. Thus, instead of pc? for o in (27), Larson’s work
would suggest that shear strength be used. Larson further concluded
that relationships such as that of Orphal [1970] which are explicitly
dependent upon depth of burial may work well in certain media {e.g.,
very weak fluidlike media or in media where shear strength increases
proportional to depth}); but extrapolation of such a relation to other
materials, and in particular to salt, would be extremely dangerous.

It is also worth noting that according to Crowley [1970} cube-root
scaling only applies if, in addition to gravity, radiation effects are nat
an important consideration. If either is a significant consideration,
then according to Crowley scaling is no longer possible. In addition,
Glenn [1990] shows that cube-root scaling is strictly valid only if a
point source explosion is considered. For a finite source, two addi-
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Fig. 5. Shear strength versus confining pressure [Larson, 1984): (a) salt and {(b) Nugget
sandstone. In salt the shear strength is independent of confining pressure while in Nugget
sandstone shear strength is nearly linearly dependent on it.



tional parameters, the mass and energy per umt volume, enter the
problem via the initial conditions. Glenn then points out that with
nuclear explosives, the experimental emplacement cannister generally
bears little relation to the yield and shows how this manifests itself
in the amount of internal energy deposited in a material. Holding
the source volume fixed, while varying the yield, Glenn's calculations
showed that cube-root scaling is only a crude approximation. Thus,
there are reasons why cube-root scaling may not be appropriate to
the seismic source function,

V. New Directions: Chemical/Nuclear Equivalence

There has long been a concern that chemical and nuclear explo-
sions can not be scaled to each other and that free-field measurements
are also somehow different from measurements made at greater dis-
tances. These concerns are addressed in this section. New regression
analysis results are reported for cavity size, seismic mement, and cor-
ner frequency. The compilation of data include previously published
and unpublished data from both nuclear and chemical explosions and
from all measurement regimes. The data, whether measured in the
free-field or at teleseismic distances, did not reveal any differences
between chemical and nuclear explosives for the basic source func-
tion parameters.

A. New Regression Resulls

As described above, Mueller and Murphy [1971] and Murphy [1974
and this volume] have presented a theoretical relationship of seismic
moment to cavity size and have demonstrated some experimental
evidence in support of it. They have also shown that the scaled cor-
ner frequency is depth-dependent. In the following, the relationship
of cavity size to seismic moment is expanded to include corner fre-
quency. The analysis consists of two phases. Initially, an empirical
model is fit to the data (cavity radius, seismic moment, and source
radius) to determine if the data are consistent with the theoretical
yield scaling. Since the data do not contradict the theoretical scaling,
the yield exponent (coefficient in log space) is fixed at the theoretical
value. Had the empirical coefficient been significantly different from
the theoretical value, the empirical value would have been adopted.

The second phase of the analysis is to select the most parsimonious
model which includes the effects of parameters, other than yield,
which explain the variation in the observed data. Coefficients for the
parameters included in the model are estimated using the standard
regression technique of minimizing the sum of squared differences be-
tween the observed data and the model. In addition to estimating the
coefficients, two other outputs of the regression analyses were used to
compare alternate models. One, the estimated standard deviation, o,
of the measured variables was used to compare two models with the
same number of parameters. The model with the lowest value of ¢
is preferred. The second output, the significance level, p, associated
with each parameter, was used to test the importance of each param-
eter. If the significance level is low, e.g., p < 0.05, the parameter was
considered to explain a significant amount of the observed variation
in the measured variable and is retained in the model. On the other
hand, if the significance level is large, e.g., p > 0.05, the parameter is
not considered to explain a significant amount of variation above that
explained by the other parameters in the model and ts dropped from
the model. The final model consists only of statistically significant
parameters.

All of the models considered below consist of products of param-
eters raised to some power. When written in logarithmic form, all
but one of these models become linear with the original exponents
as coefficients. The random variation associated with the measured
variables, after fitting the model in log space, is expressed, in its
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original units, in terms of an F-value corresponding the 20 level of
variation in log space, i.e.,

Fy, = 10197, (31)

where ¢ is the standard deviation derived from the regression anal-
ysis. The F-value could just as well be defined at the lo level by
omitting the 1.96 factor in (31). The F-value is frequently used to
construct confidence interval estimates of the ‘true’ value of the re-
sponse (e.g., cavity radius, seismic moment, or source radius) given
a fixed yield and fixed values of the other parameters in the model.
For example, if F2, = 1.3 and = is the predicted value of the cavity
radius, then the true cavity radius can be expected with 95% confi-
dence to be between 1.3z and z/1.3.

1a. Cauvity Size—Theory. Under the assumption that the mate-
rial’s shear strength is negligible, Nuckolls [1959] derived a solution
for the cavity radius

R. = CW3p)’>, (32)

where 7 is the adiabatic expansion coefficient of the cavity gas, P
is the overburden pressure (P = pgh), and C is a function of 7,
the vaporization pressure, and of a proportionality constant relating
energy to the product of cavity gas pressure and volume (PV~E).
Each of these parameters is material-dependent. Haskell [1961] found
an implicit, quasi-static solution to the cavity problem for an elas-
tic, plastic material which behaves according to the Coulomb-Mohr
criterion, i.e., the shear strength is a linear function of the confining
pressure plus a constant. The parameters in this solution are initial
cavity radius, elastic radius, Lamé constants, overburden, 7, yield,
and shear strength quantities. In both cases, depth enters the prob-
lem by way of the overburden pressure.

Boardman et al. [1964] and Higgins and Butkovich [1967] esti-
mated the material dependent constant, C, in (32) for several mate-
rials. Boardman et al. assumed that ¥y = 4/3 and had data from 35
explosions available while Higgins and Butkovich evaluated ¥ as well
as C for several materials using 46 explosions. Both groups reported
excellent results for these small data sets; Boardman et al. had a 2¢
F-value of about 1.15 to 1.47 depending on material while Higgins
and Butkovich had less than 1.22, with ¥ ranging from 1.013 to 1.142
depending on source material. Higgins and Butkovich concluded that
cavity size is independent of the material’s shear strength.

Closmann [1969] performed a regression analysis on the same 46
nuclear explosions and estimated the coefficients in the empirical cav-
ity radius, yleld, and material properties relationship,

log(Re/h) = 2o + 21 log(W"/* [ha'/3) + 2, log(u/ k) + z3log(/ o),
(33)
to be 0.131, 0.9184+0.037, -0.820+0.674, and 0.244+£0.037 for zo
through zj, respectively, where « is Young’s modulus. After col-
lecting terms (33) becomes R, oc W93%6/p0-161  He did not report
on the statistical significance of these coefficients but did recognize
that the large standard deviation on 3 did indicate a large uncer-
tainty in its use. Had he dropped this pair of terms and recalculated
the remaining coefficients, he may have found somewhat different
yield and depth exponents. He neither did this nor did he offer any
justification for retaining this term.

Other investigators [Michaud, 1968, Orphal, 1970, Terhune and
Glenn, 1977 and Glenn, 1991] have attempted to include the mate-
rial’s shear strength. Michaud simply modified (32),

520 s

Re= ————
T (Pt C )

) (34)
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where C refers to the emplacement geometry (C = 1 for a tamped
explosion) and Cs is a strength term. Orphal derived the cavity
size for an elastic, plastic material using the Coulomb-Mohr yield
criterion and a simplified cavity pressure assumption to obtain an
explicit solution for the cavity radius,

G 1/3
wiie 35
((Cj + P())" _ Cz)l/3-y ( )

where C} is a function of vaporization radius and pressure, while C,
and n are different functions of the shear strength parameters and
Young’s modulus.

Terhune and Glenn [1977] performed a parameter study using 1-
and 2-dimensional finite differences codes to determine a functional
relationship of cavity size to overburden, shear strength, and yield.
They assumed that the material’s shear strength can be modelled by
a combination of the Coulomb-Mohr and the von Mise’s yield criteria,
i.e., the shear strength is linearly proportional to confining pressure
(Coulomb-Mohr) up to some point but beyond that it is constant
(von Mise’s). The results indicated that cavity radius is determined
by

63 W7/24

Re=;g7m'

(36)
where Y is the shear strength. The yield exponent of 7/24 was deter-
mined by plotting the difference between the final and initial cavity
sizes versus yield. From this, they concluded that the yield scaling
(7/24) of Baker et al. [1973] applies.

Following Haskell [1961], Glenn [1991] found a quasi-static solu-
tion using von Mise’s yield criterion. This solution is also an implicit
one. However, an explicit solution is possible in the case where the
cavity’s final size is much larger than its initial size, as in a nuclear
explosion. The cavity radius is then

v - 1) }”’ 13
R, = W=, 37
¢ C[4W(P..+§YF) (37a)
where 9 )
- (14
F_1+In[3y(1_u)], (375)

and C depends on the initial cavity size.

Using (35), Orphal [1970] analyzed 172 explosions but he had
estimates of the required material properties, including 7, only for
broad categories of materials. He found that cube-root scaling was
not significantly different from the (.29 obtained by Heard [reported
and used by Mueller and Murphy, 1971] and that the depth exponent
ranged from 0.08 to 0.14 depending on media.

Yield and depth exponents are important quantities in the seismic
moment versus yield (or cavity size) relationship and the difference
between 0.29 or 0.306 and 1/3 can be important. For example, the
use of Heard’s cavity radius yield exponent by Mueller and Mur-
phy [1971] results in an amplitude, yield scaling exponent of 0.87,
considerably less than the theoretical value of 1. Therefore, these
exponents should be as well determined as possible. Since Orphal’s
work was published, cavity data and some corresponding material
properties data (but unfortunately not shear strength) have become
available on nearly twice as many explosions, therefore, the empirical
cavity size versus yield relationship was re-evaluated, incorporating
available material properties.

1b. Cavity Size—Regression Analysis. The theoretical relation-
ships (32), (34), (35), and (37a) all predict a cube-root yield depen-
dency. Only the finite difference parameter study of Terhune and
Glenn [1977] predicts a different yield dependency. Of those that
incorporate shear strength, only (36) has it as a stand-alone term;
the others all have it combined with overburden. If v is significantly

different for each material then (32), (34), and (35) predict different
depth dependencies. Therefore, one issue to be addressed, in addi-
tion to whether the data support cube-root scaling, is the correct
functional form to include shear strength. Another is whether the
data support different depth dependencies for each material. To ad-
dress these issues, the US cavity data and geophysical parameters in
the LLNL Nuclear Test database [Howard, 1983] were used, supple-
mented with data from 4 French tests in granite and 1 USSR test in
salt [Lin, 1978] and with data from laboratory experiments in salt
and sandstone [Larson, 1984].

As shear strength is not one of the parameters in the database,
the second of the above questions cannot be fully addressed. How-
ever, relationships of the quasi-static form (34, 35, and 37a) can
probably be ruled out. The parameters v and Y of (37a) were
found by non-linear regression analysis. While the value found for ¥
(10 MPa) was reasonable, the one for ¥ (0.2) was not. This should
not be too surprising since Glenn [1991] also found that the quasi-

TABLE 2. Cavity Radius

21 06=00734

N =358
Fog=1.393
Parameter Coeff. Std. error p
Intercept 3.9906 0.3819 0.0000
w 0.3397 0,0021 0.0000
p 0.2433 0.1395 0.0820
M -0.1807 0.0273 0.0000
Pg -0.2787 0.0295 0.0000
GP -0.0020 0.0008 0.0188
22 o0=0.0742
N =358
Fpg=1.393
Parameter Coeff. Std. error p
Intercept 4.1028 0.3843 0.0000
P 0.2185 0.1408 0.1216
n -0.1950 0.0272 0.0000
Py -0.2621 0.0293 0.0000
GP -0.0024 0.0008 0.0041
23 6=01151
N =358
Fy5=1.679
Parameter Coeff. Std. error P
Intercept 4.8407 0.5959 0.0000
p 0.0554 0.2183 0.7998
n -0.2890 0.0422 0.0000
Py -0.1527 0.0455 0.0009
GP -0.0053 0.0013 0.0001
24 o =0.0741
N =358
Fyg = 1397
Parameter Coeff. Std. error p
Intercept 4.1667 0.1793 0.0000
B -0.3848 0.0467 0.0000
P -0.2625 0.0292 0.0009
GP -0.0025 0.0008 0.0016




DENNY AND JOENSON 13

O Alluvium
A Tuf
© HRhyolite
g_ + Sandstone
X Shale
¥ Basah
A ¥ Sat { Nuclear
0] # Dolomite
& Hoggar Granite
% NTS Granite
o
[}
%
0
S o
g 57
e
N
o
O-i-
©
<
o
1 | |
5 1 5
e e7 e7

Po

Fig. 6. Cavity radius residuals versus overburden. The sandstone and the unflagged salt data are from very small
laboratory chemical explosions [Larson, 1984]. No clear evidence is seen to support a different depth dependence for each
material and no clear evidence is seen that chemical explosions are different than nuclear ones. A shear strength and a
tamping factor are probably required to explain the remaining variance.

static solution approximated the dynamic one only when the cavity’s
final radius was not much larger than its initial radius. This is clearly
not the case for a fully tamped nuclear explosion and, therefore, (37a)
does not apply. A relationship incorporating shear strength as in (36)
is more likely to be appropriate.

To address the yield scaling issue, a log-linear model similar to
(30) and (33) was used:

log R. = zo+ 2, log W + 25 log p+ z3 log st + 24 log Po + 25G P, (38)

where GP is the gas-filled porosity, i.e., that portion, given in percent,
of the total volume filled with gas. The gas porosity was included
because Butkovich [1976] found, when investigating the disposition
of the former cavity material, that even 1% gas porosity can account
for the total cavity volume in just a few cavity radii if the pores
are completely crushed. The density and shear modulus were in-
cluded because a preliminary investigation of cube-root scaled cavity
radii showed that both it and gas porosity could explain much of the
variance.

The intercept, 2, and coefficients, z;, of (38) were found and are
given in Table 2 as model 2.1. Based on the criteria given in the in-

troduction to this section, the significance levels indicate that all the
variables except density make a significant contribution. The esti-
mated yield coefficient clearly suggests cube-root as opposed to 7/24
scaling of Baker et al, Nevertheless both scaling laws were tested by
running two additional models. The yield coefficient was set to 1/3
and 7/24 in model 2.2 and 2.3, respectively, and the other coefficients
were re-evaluated. The results are shown in Table 2. Of the two mod-
els. 2.2 has a much smaller standard deviation and corresponding
F-value. Therefore, the data do support cube-root rather than Baker
et al. scaling.

While the significance level in model 2.2 suggests that the den-
sity does not make as significant contribution to the reduction of the
variance over that of the other variables, its coefficient and that of
the shear modulus are nearly the same value but of opposite sign,
suggesting that both of them could be replaced with shear wave
velocity. This possibility was tested in model 2.4 and was found
to fit the data equally well. Since 2.4 is a smaller model, it is pre-
ferred over 2.2.

The residuals of model 2.4, shown in Figure 6 versus overburden,
address the depth dependence and chemical versus nuclear questions.
If the various materials have different depth dependencies it is not
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Fig. 7. Estimated yield from (39) vs actual yield. The very small chemical explosions (W < 1x1077 kt) are as well
estimated as the nuclear ones. The reduction in the variance due to (39) is large at nuclear yields greater than about
1 kt but not at lower ones. This is probably due to measurement error. The hard-rock explosions randomly overlay the
ones in porous rock as seen in the offset where the highly porous rocks are not differentiated.

clearly evident. The hard-rock materials exhibit as much variance
as the porous ones. Nor is it clear that chemical explosions are dif-
ferent from nuclear ones since the chemical explosions in salt appear
to merge with the nuclear ones at high overburden (taken to be the
same as confining pressure in this figure). Apparently to explain the
remaining variance in Figure 6, shear strength, and possibly initial
cavity size, must be taken into account. As Glenn [1990] points out,
the emplacement cannister size bears little relation to yield. There-
fore, a tamping factor as well as a shear strength term may be re-
quired in (38). If such information could be made available, (38)
should be appropriately modified and re-evaluated.
Given model 2.4, the cavity radius, yield relation is

R 1.47x10* w1/3

R, = Jo-3ets pg7e3s 100 002GP (39)

Several interesting results of (39) can be seen in Figure 7. The yields
of the laboratory chemical explosions are as well estimated as those of
the nuclear ones. Also seen is that the variance about (39) is largest
for the low nuclear explosions. This may be due to the measurement
error, estimated to be about 1.5 meters (N. R. Burkhard, LLNL, per.

comm.). The most significant aspect of Figure 7, however, is that the
hard-rock explosions randomly overlay the porous ones.

2. Seismic Moments. In Figure 8 seismic moments are plotted
against yleld. The measurements were made in all distance regimes,
for both types of explosions, and in many different types of materials.
No distinction is made between the different types of data and it is not
clear that they are consistent with each other or with yield scaling to
the first power. To unify the data, the ratio of the measured moment
to the theoretical moment was modelled with

log(Mo /M) = za + 21 log W + z2log p + z3log Po + 2aGP, (40)

where M, = impa?/t?. The coefficients in (40) were evaluated with
and without the data of Aki et al. This was done because of the
concerns stated above that the free-fiecld moments may have been
estimated from data taken in the non-linear region and that the
other moments may include effects due to non-isotropic mechanisms,
e.g., tectonic release or driven block motions. Using the same pro-
cedure outlined above, virtually identical results were found for the
two cases. The shear modulus was not found to contribute to the
reduction in variance while overburden and gas porosity were. It
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Fig. 8. Moment vs yield. The small explosions (W < 0.001 kt) are chemical and the others are nuclear. The data of
Aki et al. [1974] and Patton (this volume) were previously described. The data of Johnson are from moment tensor
inversions of surface data taken close-in on (1) the small chemical explosions at NTS [Johnson and McEvilly, 1990],
(2) chemical explosions fired by the USGS in a limestone quarry [McEvilly and Johnson, 1989], and (3) two nuclear
explosions at NTS [Johnson, 1988]. McGarr and Bicknell [1990] took their data both in the free-field and close-in on
the surface from chemical explosions in two South African gold mines. The data of Denny [1990] include SALMON and
free-field measurements of chemical explosions at NTS (unpublished). The data of Stevens [1986] are from measurements

of teleseismic surface waves.

was also found that no additional yield term is required. The yield
dependency contained in M;, first power from (39), is sufficient. The
model obtained for the seismic moment is

My = LMtPg,Msom—u.ozescp (41)
311

The reduction in variance due to (41) over a simple moment, yield
relationship can be seen by comparing Figure 9 with Figure 8. This
comparison shows a very large reduction, especially at the very low
yields where the range in gas porosity is the greatest. A large reduc-
tion is also seen in Aki’s data set. Figure 9 demonstrates that there is
probably no need to treat the different kinds of materials separately,

as the hard-rock explosions overlay the porous ones.
That the different types of data, i.e., chemical, nuclear, free-field,
close-in, regional, and teleseismic, appear to be consistent can be seen
in Figures 9 and 10. If there were an important diflerence between

the different types, it is not evident in these figures. In Figure 9,
the chemical explosions are as evenly distributed about the simple
moment, yield regression line as the nuclear ones, and in Figure 10
the measurement regimes, likewise, seem to be compatible with each
other.

It is important to bear in mind that, although the total number of
measurements is 86, the data set is not large considering its diversity.
It is well known that statistical results on small data sets can be mis-
leading and the F-value, in this case, is not small. Therefore, these
results should not be taken as an unequivocal demonstration of the
compatibility of the different data types. More data may change the
picture. Nevertheless, there is no indication of a difference between
the various types of data. Efforts should be made to enlarge the data
set and, especially, to fill in the huge gap near 1 kt.

3. Corner Frequency/Source Radius. The data used in the corner
frequency analysis are shown in Figure 11, where instead of corner
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Fig. 9. Yield estimated from (41) versus actual yield by material. As with the cavity radivs results, the hard-rock
moments randomly overlay those for porous rocks. Also the chemical explosions are seen to be consistent with the
nuclear ones. The reduction of variance due to {41) over a simple moment, yield relationship can be seen by comparing
this figure with Fig. 8. The 95% confidence level F-value is 6.34 for Fig. 8 while in this figure it is 2.34.

frequency, source radius, R, = /7 f., has been plotted. This figure
shows that the different types of data appear to be consistent with
each other and with cube-root scaling. This would not be the case if
attenuation had an important effect on the data. To confirm cube-
root scaling, the ratio of the measured source radius to the cavity
radius was modelled with

log(R,/R.) = 2o+ 21 log W + 25 log p+ zapt+ 24 log Po+zsG P (42)

where R, is given by (39). No additional yield term was found to
be required. The yield dependency contained in R., cube-root, is
sufficient. Both the shear modulus and the overburden were found to
make significant contributions to (42) but density and gas porosity
were not. The model for source radius is
Ao L n 07245 p-0.2807
R, = ch# Py . (43)
The reduction in variance due to (43) over a simple source ra-
dius, yield relationship can be seen by comparing Figure 12 with
Figure 11. This comparison shows that (43) reduces the variance
considerably but not as dramatically as in the moment case. As

with the moment data, the few hard-rock (Figure 12) explosions ran-
domly overlay the porous ones with the exception of the one in salt
(SALMON). Also, as with the moment data the different data types
(Figure 13) appear to be consistent. Finally, there has been con-
cern that corner frequency estimates from data taken outside of the
free-field are contaminated by spall [Vergino et al., 1988]. While this
phenomenon undoubtedly occurs, it does not appeat to be a serious
problem, given the variance in the data.

This data set is half again larger than the seismic moment set
and, therefore, it may provide somewhat greater confidence that no
significant differences between the various types of data exist. How-
ever, efforts should still be made to enlarge the data set and to fill in
the buge gap near 1 kt.

B. Conclusions

Ofi the source model parameters, the seismic moment and the cor-
ner frequency are better known than the roll-off or the overshoot.

The empirical cavity radius formula, (39), found in this study is
significantly different from that used in the Mueller-Murphy source
model and leads to different yield scaling. The source function’s mo-
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Fig. 10. Yield estimated from (41) versus actual yield by measurement regime. The various regimes are indistinguishahle

as they are randomly interspersed.

ment and corner frequency are both dependent on the cavity radius,
but in different ways, and are consistent with cube-root scaling when
the material properties are taken into account. All three of these
source properties are seen from (39), (41) and (43) to be dependent
on depth of burial. Unfortunately the question of whether depth is
a surrogate for shear strength, as suggested by Larson’s [1984] work,
could not be addressed as shear strength data is not available on
a case by case basis. However, Schock [1981] has presented data
that show a rough correlation between yield strength and shear wave
speed, suggesting that perhaps shear wave speed is a surrogate and
depth is not.

No evidence was found in this study to suggest that chemical
and nuclear explosions are significantly different. In fact, the data
support the conclusion of Killian et al. [1987] who found from a com-
prehensive finite difference study of nuclear and chemical explosions
in a variety of geologic materials that no differences between the two
sources exists beyond a range equal to twice the original size of the
chemical explosive.

C. Implications

Assuming that (39), (41), and (43) are a perfect representation of

reality, then some interesting consequences can be derived. If the ma-
terial properties are independent of depth and the containment rule
requires that depth be proportional to the cube-root of the yield, then
cavity radins, moment, and corner frequency would scale as W0 246,
W0-849 and W-918 respectively. A more realistic picture for NTS
can be formed by calculating the source function properties for all
the explosions having the required material properties. The results
of this sampling of N'TS suggest that, given only the yield, cavity ra-
dius can be estimated to within a factor of 1.6 with 95% confidence.
Similarly, seismic moment, corner frequency, and energy can be esti-
mated within a factor of 4.9, 1.7, and 6.4, respectively. To obtain a
smaller F-value, the material properties must be tightly controlled.

The results of the above calculation are shown for seismic mo-
ment and corner frequency in Figures 14 and 15, respectively. The
slope is seen to change significantly with increasing yield in both fig-
ures. This is due to the material property changes with depth (yield).
Given this large variance and character of the moment plot, it is not
difficult to see how repeated random samplings of these results for
a small number of explosions could produce greatly different slopes.
The many different observations, documented above, are then not
surprising.
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Fig. 11. Source radius versus yield. The small explosions are chemical ones while the remainder are from nuclear
explosions. The data of Bocharov et al. [1989] are from a single broadband, teleseismic station and were estimated
from the peak of the particle velocity spectra. The data of Denny are from (1) free-field and close-in measurements of
chemical explosions at NTS (unpublished) and (2) from peaks of station averaged particle velocity spectra of regional
measurements (unpublished). The data of Dowla (per. comm.} are from regional measurements made by fitting the P,
displacement spectra with a second order model. M¢Garr and Bicknell [1990] estimated the corner frequencies from the
particle velocity spectra from free-field and close-in surface measurements described above. Their surface datum was
omitted because it apparently suffered a great deal of attenuation traveling upward in the crust. The data of Vergino
et al. [1988] were from regional measurements reduced by the transfer function technique, e.g. see Denny and Goodman

[1990].

VI. Summary and Recommendations

The vibrating sphere problem provides a good starting point for
building a model for the seismic source function of underground ex-
plosions. However, little is known about the basic properties of the
radial stress and elastic radius. Instead, the parameters of moment,
corner frequency, overshoot, and roll-off are estimated to describe the
source function. A source radius term can be defined from the cor-
ner frequency but it has no known relationship to the elastic radius
except that, in a fully tamped explosion, it is greater than the elastic
radius, while in a fully decoupled explosion, it is equal to the elastic

radius.

Anu interesting, worthwhile exercise would be to derive the equiv-
alent radial stress for those few explosions where free-field radial par-
ticle velocity measurements were made at several ranges. For those
explosions whose data are only in the non-linear zone, the results
would obviously be fictitious but their progressive change in shape
with range may be enlightening.

In this study it was found that the seismic moment and the corner
frequency are better known than the other source properties, though
not so well known that additional data would not increase confidence
in the empirical formulas. On the contrary, additional data should
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Fig. 12. Yield estimated from (43) versus actual yield by material. As with the cavity radius and moment results, the
hard-rock source radii randomly overlay those for porous rocks. Also the chemical explosions (W < 1x107* kt} are
seen to be consistent with the nuclear ones. The reduction of variance due to (43) over a simple source radius, vield
relationship can be seen by comparing this figure with Fig. 11. The 95% confidence level F-value is 1.93 for Fig. 11 while

in this figure it is 1.65.

be acquired to improve confidence. An effort should also be made to
better understand how shear strength should be factored into these
empirical relationships, to understand the trade-offs between shear
strength and depth, and to acquire shear strength information. Some
of the variance in each of the empirical relationships could, also, be
due to the initial source volume as suggested by Glenn [1990] and
information on it should be collected to determine its impact.

What was not found in this study was also significant. No sig-
nificant differences between hard-rocks and porous ones were found
beyond what is accounted for by the shear modulus and gas porosity.
Nor was any evidence found that chemical explosions are significantly
different from nuclear explosions, in agreement with the finite differ-
ence calculations of Killian et al. [1987]. And no differences were
found in either the moment or corner frequency due to the measure-
ment realm, near-field versus far-field. However, the hard-rock data
set is very small so that the possibility may still exist that hard-rocks
should be treated differently than porous ones.

The lack of significant differences between the two types of explo-

sives suggests that experiments employing chemical explosives could
be an effective means of resolving the remaining source function un-
certainties. The results from chemical explosions are, in fact, very
encouraging and further use should be made of such experiments to
gain experience in a wider variety of materials. An experimental pro-
gram designed around chemical explosions could remove many of the
uncertainties and answer many questions, including the behavior of
different rock types at low stresses.
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