
of the magnitudes of  and , they are typically upgraded to general deformations by multiply-

ing  by the plastic flow direction . Hence, the rate of the backstress tensor for general

deformations is typically presumed to be parallel to the plastic flow direction , which is parallel

to  for associative Von Mises plasticity. At yield,

 (3.70)

Therefore, Eq. 3.66 may be written in a purely scalar form as

, where  (3.71)

Formally, this may be written directly in terms of the strain difference as

 (3.72)

EXACT integration of non-hardening Von Mises plasticity models 
subjected to a constant strain rate with a time-varying tangent 
stiffness

The previous section presented analytical results for special loading paths that would ensure

that neither the principal stress directions nor the Lode angle of the stress (i.e., the angular posi-

tion on the circular octahedral yield profile) would never vary during plastic loading, which meant

that the yield normal would be constant and therefore the tangent stiffness tensor would be con-

stant. In that case, a piecewise linear strain history results in a piecewise linear stress response

through direct application of Eq. 2.22. Here in this section, we derive results for piecewise con-

stant strain rate problems that result in rotation of the stress deviator. Of course, for von Mises

plasticity, the magnitude of the stress deviator is constant. Hence, rotation of the stress deviator is

actually motion on a sphere embedded in the five-dimensional space of deviatoric symmetric ten-

sors. In this very abstract geometrical perspective, we will show that the stress moves along a

major circumference of the sphere to align itself toward the constant applied strain rate deviator.

We will show that the angle between the strain rate and stress deviator decays exponentially to

zero. 
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This document is an excerpt of from Brannon's unpublished working document that was later partially
transcribed in the following two publications:

Brannon, R. M. and S. Leelavanichkul (2010) A multi-stage return algorithm for solving the classical damage component of
constitutive models for rocks, ceramics, and other rock-like media. Int. J. Fracture v. 163(1), pp. 133-149.

K.C. Kamojjala, R. Brannon, A. Sadeghirad, and J. Guilkey (2013) Verification tests in solid mechanics, Engineering with
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Unfortunately, both of those publications had some solution transcription typos, which were not in this
original working document.

Equation (3.129) of this excerpt document has correct formulas (and additional details) that serve as
errata for the two publications. We apologize for the inconvenience that our typos might have caused,
and we are grateful to Dr. Andy Tonge for bringing them to our attention!
Be advised: since this is an excerpt from a larger document, there are some references to governing
equations that have not been included in this excerpt, but which are the same governing equations
summarized in the publications.



For nonhardening associative Von Mises plasticity, the first-order ODE governing the unit tensor

in the direction of the stress deviator is given in Eq. __:

, where 

subject to  when  (3.73)

Here,  is the shear modulus,  is the yield in shear, and  is the deviatoric part of the applied

strain rate. To ensure that the material behavior is plastic for , the initial stress state must lie

on the yield surface and the strain rate must be directed outward from the yield surface (i.e.,

). During plastic intervals when the strain rate deviator  is held constant, the exact

solution may be evaluated at any time  via the following algorithm (proof provided afterward):

STEP 0: Decompose the problem into isotropic and deviatoric parts. 
Given a stress state  that resides on the yield surface at time , and given a total strain

rate  that is held constant for , compute

and  (3.74)

and  (3.75)

The time varying solution for mean stress is found immediately by

 (3.76)

First check if the strain rate deviator happens to point in the same direction as . Specifically, if 

 (3.77)

then the stress deviator is constant, and the final solution for the time-varying stress is simply

. Otherwise, the stress deviator is changing direction and the remainder of

this algorithm must be followed.

STEP 1: Compute “helper” constants. The following constant scalars and tensors can be
computed from the constant parameters in the problem statement. They may, therefore, be com-
puted once and saved.
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Unit tensor in the direction of the initial stress deviator  (3.78)

magnitude of the total strain rate deviator  (3.79)

a non-dimensional “helper” parameter  (3.80)

(to obtain an orthogonal basis for the span of  and ) as follows

Unit tensor in the direction of the strain rate deviator  (3.81)

 (3.82)

 (3.83)

Remark:  and  form an orthonormal pair resulting from Gram-Schmidt orthogonalization

of  and . The check in Eq. __ ensures that this part of the algorithm is skipped if  and 

are parallel. Consequently, division by zero in Eq. __ is impossible.

STEP 2: Evaluate time-varying part of the solution. For ,

 (3.84)

 (3.85)

[ ]  (3.86)

Stress deviator:  (3.87a)

Mean stress:  (3.87b)

Total stress:  (3.87c)

STEP 3 (optional): Evaluate the decaying angle between the stress deviator 
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and the strain rate deviator. The time varying angle  between the stress deviator and the
constant strain rate can be computed by

[ ]  (3.88)

This angle is plotted in Fig. 3.6. As time progresses, the stress deviator changes orientation to

become progressively aligned with the constant strain rate .

STEP 4 (optional): Plastic strain. The plastic strain rate and its magnitude are

where  (3.89)

A scalar measure of the overall “plastic strain” (i.e., the integral of  over time) is

,  (3.90)

or

,  (3.91)

where  is the initial value of  at time .

tan 1– 2 T
T 1–
------------= T T t=

0

---

Figure 3.6. Von Mises plasticity under a constant strain rate.   (  is presumed initially zero)n01

E
˜̃ 1

E
˜̃ 2 ˜̃

·

N
˜̃o

˜̃
· p · pN

˜̃
= · p

˜̃
· p T 1–

T 1+
------------ ·= =

· p

p
0
p 1

2
--- 1 T+ 1 n01–ln ·· t to––+=

p
0
p–

1 n01– 1 n01+ exp
2 ·· t to–
----------------------+

2
-----------------------------------------------------------------------------------ln ·· t to––=

0
p p t0



PROOF. Now we will prove the exact Von Mises integration presented above. The proof is
included here only for completeness -- it does not lend much insight into the problem. 

The ODE to be solved is

, where 

subject to  when  (3.92)

Any symmetric and deviatoric tensor has five independent components. Furthermore, know-
ing that  is a unit tensor tells us that the time varying solution for  will always lie on the four-
dimensional surface of a five dimensional unit sphere. We show in this section that  will move
along the major diameter of the sphere, starting at its known initial orientation, , and asymptot-
ically approaching an orientation aligned with .

Visualizing five-dimensional space is difficult. Two-dimensional space is far easier. Knowing
that this problem involves two known tensors,  and , it makes sense to set up an orthonormal
basis for tensor space in which the first two base tensors span the same plane as our two known
tensors. It will be shown that all motion of the stress deviator (and therefore motion of ) will
occur entirely within this 2D subspace.

First introduce a basis for which the first base tensor, , is the unit tensor in the direction of
 (which is identical to a unit tensor in the direction of )

, where  (3.93)

Because  has been assumed constant, both  and  may be treated as known constants.

· p ·

0–

p
0
p–

Figure 3.7. Plastic strain for the Von Mises response under a constant strain rate.   The first
plot shows the ratio of the plastic strain rate to the total strain rate, plotted as a function of the total
strain magnitude (normalized by the factor ). The second plot shows the “plastic
strain” (normalized by ). These plots assume .
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The time-varying  can always be decomposed into a part that is parallel to  plus a
remainder that is perpendicular to . Namely, we can always write

 (3.94)

where

 (3.95)

and

 (3.96)

With this decomposition, the governing equation, 3.92, becomes

 (3.97)

Not only is  perpendicular to  by construction, but (because  is constant) so is . The part

of the above equation that is perpendicular to  is given by

 (3.98)

This result shows that the rate of  is always proportional to  itself. This is possible only if the

direction of  remains constant. We will define  to equal this constant direction. Since the

direction of  is constant, it must equal the initial direction of  obtained by evaluating Eq. 3.96

at time , and then normalizing the result. Hence, we define

 (3.99)

Since we have now shown that  can be expressed as a linear combination of  and ,

Eq. 3.94 shows that the time varying unit normal  must also be expressible as a combination

of these two tensors:

 (3.100)

and the governing equation becomes

 (3.101)
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Equating coefficients of  and , gives a set of equations that must be solved simultaneously:

 (3.102)

 (3.103)

To ensure that the final result is a unit tensor, we know that . Hence, it is natural to

introduce an angle  defined such that  and . For now, however, we will

continue to use the Cartesian components  and . For the special case that , the nor-

mal  would be aligned with the unit tensor  and the above equations would predict zero for

the rates  and . This is the “trivial” solution. Physically, it means that a strain rate pointing in

the same direction as the stress deviator will not change the stress deviator (i.e., it can’t be pushed

outside the von Mises cylinder, so it just stays put). 

The interesting (nontrivial) solution corresponds to . Under this assumption Eq. 3.103a
may be integrated directly as follows:

 (3.104)

The result is

 (3.105)

where the integration constant is

 (3.106)

This solution asymptotes towards  as time goes to infinity. Thus we see that the exact

time varying solution for  always proceeds along the shortest path in stress space that will move

 towards alignment with . Of course, for our fully plastic assumption to hold, the initial

value  must be positive (otherwise, the solution will need to begin with an elastic phase during

with the stress proceeds along a path parallel to  until the yield surface is reached. Conse-

quently, the smallest possible value for the integration constant  is 1.

Solving Eq. 3.105 for  gives

E
˜̃ 1 E

˜̃ 2

n·
1

· 1 n1
2–=

n· 2
· n

1
n2–=

n1
2 n2

2+ 1=

n1 cos= n2 sin=

n1 n2 n1 1=

N
˜̃

E
˜̃ 1

n· 1 n· 2

n1 1

dn
1

1 n1
2–

------------------- · dt=

1 n1+
1 n1–
-------------- Ce2 · t to–=

C
1 n1

o+
1 n1

o–
---------------=

N
˜̃

E
˜̃ 1

N
˜̃

N
˜̃

E
˜̃ 1

n1
o

E
˜̃ 1

C

n1



, where  (3.107)

and, since , we have

 (3.108)

Thus, the exact solution for the time varying unit normal is

 (3.109)

Having this exact solution available for the case of constant strain rates is handy for verifying

numerical implementations. To visualize the solution, it’s useful to define the angle that  makes

with :

 (3.110)

By definition, the plastic strain rate is computed as

=  (3.111)

The magnitude of the plastic strain rate is

 (3.112)

Integrating this over time gives

 (3.113)
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EXAMPLE. The exact solution presented above applies to non-hardening Von Mises plasticity
for any constant strain rate that is not aligned with the yield normal. The solution applies even
when the constant strain rate has time varying principal directions. However, to illustrate how the
preceding exact algorithm is applied, we will consider here a simple a piecewise linear strain table
in which the strain eigenvectors are fixed. The first leg, triaxial extension (TXE), brings the stress
to yield. The second leg veers away from the TXE state into other Lode angles. The problem
parameters are shown in Tables 3.1 and 3.2.

During the initial loading, the strain rate is . Therefore,
the stress rate is

 (3.114)

Integrating this constant stress rate over time gives

 (3.115)

The limit time of  seconds marks the time at which this elastic solution reaches the yield

surface. This yield time is found by setting

 (3.116)

and solving for  to obtain:

 (3.117)

For the remainder of this first leg, the stress remains constant because the strain rate and the stress

are parallel. Specifically, for ,

Table 3.1: Material parameters

name symbol value

yield in shear  MPa

shear modulus 79 GPa

Table 3.2: Strain table

time (s)

0 0 0 0

1 -0.003 -0.003 0.006

2 -0.0103923 0 0.0103923
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 (3.118)

After yield is reached, the plastic strain rate equals the total strain rate. Therefore, the accumu-

lated plastic strain rate during the leg is

, where  (3.119)

When the strain rate changes direction, launching the second leg of deformation, the stress and

strain rate are no longer parallel, so the exact Von Mises algorithm applies. The constant strain

rate over this leg is

 (3.120)

Starting with Eq. 3.78, the algorithm calls for computation of some “helper” quantities:

 (3.121)

 (3.122)

 (3.123)

 (3.124)

 (3.125)

 (3.126)

The algorithm states that the time varying part of the solution is given by

 (3.127)

from which the stress deviator is then found by

 (3.128)
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This is also the solution for total stress because the strain is traceless at all times (making the pres-

sure zero). Thus, after substituting Eqs. 3.124, 3.126, and 3.127 into Eq. 3.128, the exact solution

for the stress is

MPa  (3.129a)

MPa  (3.129b)

MPa  (3.129c)

To update the time-varying equivalent plastic strain , the initial value for the second leg is

given by  at the end of the first leg, which is found by evaluating Eq. 3.119 at time  to

obtain

 (3.130)

Then the exact solution for plastic strain is obtained by applying Eq. 3.91 to obtain

 (3.131)
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These solutions for the stress and plastic strain history are shown in Fig. 3.8.

A VERY SIMPLE VON MISES PROBLEM THAT OFTEN UNCOVERS 
POTENTIAL FOR DIVISION BY ZERO IN PLASTICITY CODES

Many plasticity codes include an implicit presumption that the total strain rate is nonzero

whenever plasticity applies. Although this is true in most realistic applications, a simple verifica-

tion test problem can be designed such that the trial stress history has a cubic time dependence

such that the inflection point (where the trial elastic stress rate and its second time derivative are

both zero) is reached at the precise moment that yield is reached. Often, plasticity models can be

made to produce gargantuan errors (or division by zero) in scenarios like this, making this type of

loading worth including in any simple benchmarking suite.

Figure 3.8. Exact solution to the Von Mises plasticity problem defined in Tables 3.1 and 3.2.   The
thick colored lines are the analytical solution. The thin black lines that overlay the exact solution are re-
sults from a numerical plasticity code that was verified against these analytical results.
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4. Analytical single-element solutions for 
Drucker-Prager plasticity

The yield function for linear Drucker-Prager plasticity is

 (4.1)

The yield gradient is

 (4.2)

Therefore, the unit normal to the yield surface is

 (4.3)

where  is the cone angle defined by . We will presume that the flow direction is

of the same form but possibly using a different angle . Therefore,

 (4.4)

 (4.5)

The hydrostatic unit base tensor is simply the identity tensor divided by its own magnitude.

Hence,

 (4.6)

For axisymmetric loading, the radial base tensor is

 (4.7)

where positive is taken in TXE and negative applies in TXC. Hence,

 (4.8)
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Alert: r and z are respectively defined as
r = sqrt(2 J2) = magnitude of the stress deviator
and z = I1/sqrt(3) = signed magnitude of isotropic stress.
These stress invariants are isomorphic to stress space in
problems that involve no change in the orientation of the
stress deviator. Thus, a plot of r vs. z is like a q vs. p plot
(where q is von Mises equivalent stress and p is
pressure) without geometrical distortion.

Tensors P and Q are respectively the
elastic stiffness operating on unit
tensors N (normal to the yield surface)
and M (in the flow direction).

Tensors ez and er are respectively unit tensors in the
directions of the identity tensor and the stress
deviator.

Abbreviations TXE and TXC respectively denote
triaxial extension and compression.

For axisymmetric problems, subscripts "A" and "L" respectively stand for
axial and lateral components of a tensor. Thus, these are components of
the P-tensor (defined above).



 (4.9)

and

 (4.10)

Thus, the exact solutions for the axial and lateral stress rates are

=  (4.11a)

 (4.11b)

For piecewise linear strain histories, these can be integrated exactly to give piecewise linear stress

histories.

Case: uniaxial stress. When the lateral stress is held constant, Eq. __ gives the solution for the

lateral strain rate and axial stress rate
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 (4.13)
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Don't forget, this document is an excerpt
from an unpublished working document,
so this is a placeholder to refer to an
analytical reduction of plasticity to
axisymmetry.



EXAMPLE: Linear-elastic Linear Drucker-Prager yield with nonassociativity. 

The physical units in Table 4.1 can be any self-consistent set of units. Incidentally, the
strength was selected to be considerably smaller than the elastic moduli to ensure that strains
would be small to help avoid issues associated with strain definitions. To replicate this analytical
result, the stress definition must be work conjugate to the strain. Because this problem is of the
fixed-axes type, the principal directions of the stretch and strain tensors are constant and therefore
a logarithmic strain corresponds to Cauchy stress.

To assist researchers to independently reproduce our analytical solution, two yield functions
corresponding to the above prescribed data are

 (4.14a)

,  (4.14b)

where

, and  (4.15)

A flow potential whose gradient is parallel to the flow direction is

 (4.16a)

 (4.16b)

Table 4.1: Drucker-Prager parameters

Bulk modulus 10000

Poisson’s ratio 1/3

*Young’s modulus 10000

*shear modulus 3750

*Lame modulus 7500
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The driving strain path for this problem, given in Table 4.2 and Fig. 4.1, was devised so that

the first two yield events would occur exactly halfway through the second and third leg. More-

over, this driving strain path was selected so that the trial elastic stress rate will be exactly parallel

to the return projection direction in the second leg, and it will be exactly parallel to the yield sur-

face normal in the third leg. The trial elastic stress rate for the final leg is slightly more shallow

than the projection direction in the meridional plane.

Table 4.2: Piecewise linear axisymmetric driving strains

time Axial strain, Lateral strain,

0 0 0

1

2

3

4

A L

17
1800
------------– 0.00944444444444–= 17

1800
------------– 0.00944444444444–=

1 32 6+–
1800

------------------------------- 0.0441020398717–= 1– 16 6+
1800

--------------------------- 0.0212176866025=

11 16 6+
1800

------------------------- 0.0278843532692= 11 8 6–
1800

---------------------- 0.00477550996793–=

645 2 1138 3–
9000 3 2 2 3+
-------------------------------------------- 0.015266620380–= 75 2– 1598 3+

9000 3 2 2 3+
-------------------------------------------- 0.0383755053393=

t

11

22 33=

Figure 4.1. Driving strains for the Drucker-Prager verification test. 

time, tst
ra

in
, 



The exact solution is graphed in Fig. 4.2. The corresponding exact solutions for the Lode
coordinates are shown in Fig. 4.10.

-100-200-300-400

100

200
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-200

Figure 4.2. Exact solution corresponding to the driving strains prescribed in Table 4.2.   The analytical results
(thick orange lines) are shown along with a numerical simulation (thin black line) from the Sandia GeoModel [16],
which supports Drucker-Prager yield functions except that its vertex is “clipped” as shown (therefore producing
slight discrepancies in the results of the final leg). The Lode radius r in the meridional (r vs. z) plots is shown posi-
tive for TXE and negative for TXC.
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At the time that this working document was written, the test code was not getting correct solutions at the
vertex. This is evident in the errors at late time.

This figure is a good case for using the isomorphic (Lode)
stress invariants r and z instead of the more common q and p.
With isomorphic invariants, the normal to the yield surface is
actually normal to this 2D plot of r vs. z (such is not the case in
a plot of q vs p)



The analytical solution of this problem must be broken into at least four separate legs because the prescribed

strain path itself has four legs. However, some of these legs must be further broken into sub-legs where part of the

interval is elastic and part is plastic. The exact solution is tabulated in Table 4.9. Each leg’s name ends in E or P to

indicate whether the leg (or sub-leg) is elastic or plastic. In the last sub-leg, the stress is stationary at the vertex while

the strain continues to change. 

Table 4.3: Exact Solution (axisymmetric Drucker-Prager non-associativity)

Leg end
time

reason for
ending leg

1E 1 change in prescribed
strain rate

2E yield

2P 2 change in prescribed
strain rate

3E yield

3P change in prescribed
strain rate

4E yield

4P vertex 50 50

4V 4 end 50 50

A L A L

17–
1800
------------ 17–

1800
------------ 850–

3
------------ 850–

3
------------

3
2
--- 9– 16 6–

1800
--------------------------- 9– 8 6+

1800
------------------------ 50–

3
--------- 9 4 6+ 50

3
------ 2 6 9–

1– 32 6–
1800

--------------------------- 16 6 1–
1800

---------------------- 50–
3

--------- 9 4 6+ 50
3
------ 2 6 9–

5
2
--- 5 8 6–

1800
------------------- 5 4 6+

1800
------------------- 50

3
------ 2 6 3– 50–

3
--------- 3 6+

3 11 16 6+
1800

------------------------- 11 8 6–
1800

---------------------- 160 2
3
--- 110– 10–

3
--------- 33 8 6+

10
3
------ 645 2 14 3+

9000 3 2 2 3+
-------------------------------------------- 446 3 75 2–

9000 3 2 2 3+
-------------------------------------------- 160 2

3
--- 110– 10 58 3 49 2–

3 2 2 3+
---------------------------------

5 7 6 22–
12 6 3–

------------------------------ 89– 32 6+
9000

------------------------------ 199 8 6+
9000

-------------------------

645 2 1138 3–
9000 3 2 2 3+
-------------------------------------------- 1598 3 75 2–

9000 3 2 2 3+
--------------------------------------------

*derived quantities



EXAMPLE: A loading path that includes a Sandler-Rubin closed strain cycle. 

This example again uses a Linear Drucker-Prager yield criterion. In other words, the yield sur-

face is a cone centered about the hydrostat so that the octahedral yield profile is a circle with Lode

radius  that varies with pressure. The cone geometry is specified by the values of  and  cited

in Table 4.1, where  is the Lode radius at zero pressure and  is the distance in stress space

from the origin to the cone vertex. The tensor  that is used in Table 4.4 to define the yield nor-

mal and flow direction is the stress deviator, , divided by its own magnitude (i.e., ).

The parameters in Table 4.4 are in any self-consistent set of units. The strength was selected to
be considerably smaller than the elastic moduli to ensure that strains would be small enough to
avoid issues associated with strain definitions. To help researchers interpret and independently
reproduce our analytical solution, two yield functions corresponding to the above prescribed data
are

where  and  (4.17a)

, where  and  (4.17b)

Two flow potentials whose gradients are parallel to the flow direction are

 (4.18a)

 (4.18b)
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Table 4.4: Drucker-Prager parameters

Bulk modulus 40000

Poisson’s ratio 1/3

*Young’s modulus 40000

*shear modulus 15000

*Lame modulus 30000
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This problem confirms that a non-associative plasticity model admits negative net work over a closed strain cycle. This problem was submitted as a letter to the
editor of a highly ranked plasticity journal to disprove a contradictory claim (in paper that journal), which was based on an erroneous assertion that elastic strain
increments can be assumed small compared to plastic strain increments. Rather than publishing our letter, the editor had the authors retract their incorrect work in
one of their own later publications. The editor later chose not to publish yet another of our criticisms of those same authors even though the reviewers of our
manuscript directly contradicted each other (one said that our claim couldn't possibly be right, while another asserted that our claims were well known to be true).



This material will be exercised under a piecewise linear strain history (which therefore has piece-

wise constant strain rates) that includes a closed strain cycle of the type discussed by Sandler,

Rubin, and (later) Pucik. Specifically, the trial elastic stress rate during the interval 

points into the “Sandler-Rubin” wedge that is above the yield surface but below the flow poten-

tial. To make the cycle closed, the next leg has the same total strain rate except opposite in direc-

tion so that the strain at time  returns to the strain value at time .

2 t 3

t 4= t 2=

Table 4.5: Piecewise linear axisymmetric driving strains

time Axial strain, Lateral strain,

0 0 0

1

2

3

4

A L

1–
200 3
---------------- 0.00288675–= 1–

200 3
---------------- 0.00288675–=

3 32 2+
600 3

----------------------– 0.0464332–= 16 2 3–
600 3

---------------------- 0.0188865=

6 3 11 6–
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------------------------------ 0.0367824= 11 2 6–
300 3

---------------------- 0.0183912–=

3 32 2+
600 3
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Sandler-
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closed 
strain 
cycle

Leg 1: 0<t<1
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to close the cycle

hydrostatic

11

22 33=

Figure 4.3. Driving strains for the Sandler-Rubin-Pucik verification test. 
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The driving strain path for this problem, which is given in Table 4.5 and Fig. 4.3, was devised

so that the first yield event would occur exactly halfway through the second leg. The third leg,

which begins and remains at yield, was designed so that the trial elastic stress rate would be paral-

lel to , thereby making the trial elastic stress rate have a positive inner product with the

yield normal  (which is a necessary condition for plastic flow), but a negative inner product

with the flow direction  (which is the situation studied by Sandler, Rubin, and Pucik). The mag-

nitude of the strain rate during the third leg was selected such that the stress at the end of the leg

would be purely deviatoric. The final leg, which is entirely elastic, was subjected to the same total

strain increment in reverse so that the third and fourth legs together constitute a closed cycle in

strain of the type considered by Sandler, Rubin, and Pucik.

The exact solution is graphed in Fig. 4.4, where the labels correspond to the exact solution at
termination points of legs (or sublegs) as cited in the tabular exact solution in Table 4.6. For this
problem, the Lode angle was always  (i.e., triaxial compression).
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+30

Figure 4.4. Exact solution corresponding to the driving strains prescribed in Table 4.5.   The analytical results
(thick orange lines) are shown along with a numerical simulation (thin black line) from the Sandia GeoModel [16]
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The analytical solution of this problem must be broken into at least four separate legs because the prescribed

strain path itself has four legs. However, leg 2 (spanning the time range ) must be further broken into sub-legs

where part of the interval is elastic and part is plastic. The exact solution is tabulated in Table 4.6. Each leg’s name

ends in E or P to indicate whether the leg (or sub-leg) is elastic or plastic.

Table 4.6: Exact Solution (axisymmetric Sandler-Rubin type loading)

Leg end
time

reason for
ending leg

1E 1 change in prescribed
strain rate

2E yield

2P 2 change in prescribed
strain rate

3P change in prescribed
strain rate

4E 4 end

1 t 2

A L A L

1–
200 3
---------------- 1–

200 3
---------------- 200 3– 200 3–

3
2
--- 3 16 2+

600 3
----------------------– 8 2 3–

600 3
------------------- 200 3 4 2+–

3
------------------------------------- 200 2 2 3–

3
---------------------------------

3 32 2+
600 3

----------------------– 16 2 3–
600 3

---------------------- 200 3 4 2+–
3

------------------------------------- 200 2 2 3–
3

---------------------------------

3 6 3 11 6–
450

------------------------------ 11 2 6–
300 3

---------------------- 200 2
3
---– 100 2

3
---

3 32 2+
600 3

----------------------– 16 2 3–
600 3

---------------------- 200 2 2 9–
3

--------------------------------- 200 2
3
---–



The path through stress space for this problem is illustrated in Fig. 4.5, where we have multi-

plied the hydrostat axis by –1 to follow convention for predominantly compressive problems. The

first leg is hydrostatic loading. Thereafter, the stress states are all triaxial compression. Leg 3 has

a trial stress rate that forms a positive inner product with the yield normal but a negative inner

product with the plastic flow direction, making it point into the “Sandler-Rubin wedge”.

Leg 3 and Leg 4 (spanning times from  to ) are the primary area of interest for this

verification problem. Because the total strain at time at  is returned to its value at time ,

the last two legs form a closed strain cycle of the type considered by Sandler and Rubin. Specifi-

cally, leg three (from  to ) is plastic with the trial stress rate aligned with , making

it point above the yield surface but “below the flow potential” (i.e.,  but ).
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LE
G

 2
le

g 
2

leg 3

LEG 4

LEG 3

r 2J2=

z–
I1–

3
------- 3p–= =

Figure 4.5. Meridional stress path.   Dashed lines indicate the trial stress
rate direction associated with the plastic legs. Note in particular, that leg 3
points into the Sandler-Rubin wedge.
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Leg four (from  to ) is elastic with a total strain increment equal in magnitude but oppo-

site in direction to the strain increment of the preceding leg (i.e., it makes legs 3 and 4 together

form a closed strain cycle). Sandler and Rubin presented an analysis “in the small” demonstrating

that this type of closed strain cycle will have a negative total work over the cycle. Because our

verification problem involves a yield normal and flow direction that is always constant, the tan-

gent stiffness tensor is constant and the same for all plastic loading intervals. Hence, we may cor-

roborate Sandler and Rubin’s assertion “in the large” (i.e., for large strain increments). 

Figure 4.6 shows the work rate [namely ]. As indicated in the fig-

ure, the total area under the work rate history for Legs 3 and 4 is negative, consistent with the

assertions of Sandler and Rubin. The exact solution for the work increment during this closed

strain cycle is

 (4.19)

Our plasticity code was verified to give the same result.

t=3 t=4

t

w·

Figure 4.6. Work rate vs. time.   The light shaded regions have identically equal area.
The dark shaded region illustrates graphically the amount by which the work increments
differ in the plastic and elastic parts of the Sandler-Rubin closed strain cycle formed by
the last two load legs.
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This confirms that this sample
problem gives negative net work
in a closed strain cycle.

For more information about the fascinating fact that that any (classical) non-associative plasticity model can have a non-unique unstable release of 
energy, see the following publications: 
 1. Pu ik, T., J.A. Burghardt, and R.M. Brannon (2015) Instability and nonuniqueness induced by nonassociated plastic flow -- Part 1: a case study,  J. of the 
Mechanics of Materials and Structures, accepted May 2015. 
2. Burghardt, J.A. and R.M. Brannon (2015) Instability and nonuniqueness induced by nonassociated plastic flow -- Part 2: investigation of three constitutive 
features that eliminate or delay the Sandler-Rubin instability,  J. of the Mechanics of Materials and Structures, accepted May 2015. 



As discussed by Sandler and Rubin, the possibility of negative work over a closed strain cycle

does not violate the first or second laws of thermodynamics (i.e., it does not indicate the possibil-

ity of extracting unlimited energy by cycling through this total strain path). Repeating the strain

cycle will produce entirely elastic response because, as seen in Fig. 4.5, state 4E (at the end of

Leg 4) is different from state 2P (at the beginning of Leg 3). However, Sandler and Rubin do

assert that the possibility of negative work in closed strain cycles implies non-uniqueness in

dynamic problems that can lead to spontaneous motion from a quiescent state. This possibility

was later verified numerically by Pucik, who showed that an infinitesimal strain pulse (namely

one that leads to trial stress rates pointing into the Sandler-Rubin wedge) can grow in magnitude

without bound.

Fixed-axes plane-stress Mohr-Coulomb plasticity
Analytical solutions are most tractable when the  and  tensors are constant over extended

time intervals. The Mohr-Coulomb yield criterion is a good choice for analytical solutions
because (as illustrated in Fig. 4.7) its yield surface is piecewise planar, making its normal there-
fore constant over broad ranges of stresses on the yield surface. 

The Mohr-Coulomb yield criterion presumes yield occurs when the outer Mohr’s circle in the
Mohr diagram first touches a straight “failure line,” as illustrated in Fig. 4.7. Working out the
geometry of that figure shows that the Mohr-Coulomb failure criterion may be written

P
˜̃

Q
˜̃

failure line

S0

HML

Figure 4.7. Mohr-Coulomb yield in the Mohr diagram and in stress space. 



 (4.20)

Here,  is the lowest principal stress and  is the highest (we take stress positive in tension).

The friction angle  and the cohesion  parameters quantify the slope and intercept of the

failure line, as illustrated in Fig. 4.7. 

A yield function corresponding to the yield criterion in Eq. 4.20 is

 (4.21)

The Mohr-Coulomb yield function is not differentiable at triaxial stress states (i.e., at states where

the middle eigenvalue  happens to equal the low or high eigenvalue). At non-triaxial states

(where all three eigenvalues are distinct), the stress gradient of this yield function is

 (4.22)

Here,  and  are eigenprojectors that indicate the location of the associated eigenvalue. For

example, if the stress tensor is , then  and

. If, on the other hand, the eigenvalues are ordered differently such as

, then  and .

Because the eigenprojectors,  and , depend on the locations of the high and low eigen-
values, it is important to keep track of the eigenvalue ordering in analytical solutions. A change in
the eigenvalue ordering during a loading leg will require splitting the leg into sub-legs to analyze
each separately. A change in eigenvalue ordering, by the way, requires the stress state to pass
through a triaxial condition where the yield function is non-differentiable because of yield surface
vertices. To determine if vertex handling is necessary, you may obtain a stress solution based on
the tentative assumption that only one of the planes is active (i.e., that the trial stress remains
always outside the Koiter fan). If, after obtaining this tentative solution, the predicted stress is on
or within the yield surface  throughout the load interval, then the tentative single-surface
solution was valid. Thankfully, our analysis will show that this particular verification problem
requires no vertex handling because all changes in eigenvalue ordering occur only during elastic
legs.
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The yield function cited in Eq. 4.21 is not unique. For example,  would be an equally
acceptable yield function that satisfies sign conventions required for yield functions. Conse-
quently, the yield gradient  in Eq. 4.22 is not unique. However, the UNIT normal to the yield
surface is unique. Even though  depends on your choice of yield function, the unit tensor in the
direction of  (evaluated on the yield surface) is the same for all choices of the yield function.
The Mohr-Coulomb yield gradient in Eq. 4.22 was presented as a necessary first step to compute
this unique unit normal to the yield surface:

 (4.23)

For linear-elastic non-hardening uncoupled plasticity, Eq. __ then gives

,  (4.24)

where

and  (4.25)

Converting angles in the Mohr diagram to angles in stress space. The friction
angle  is the angle that the failure line makes with the -axis in the Mohr diagram. In stress
space, however, the flat failure planes on the yield surface form a different angle  with the
hydrostat given by 

 (4.26)

Here,  is a unit tensor in the direction of the identity tensor. Specifically, because the magnitude

of the identity tensor is , 

 (4.27)

Therefore 

 (4.28)
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Using Eq. 4.25 therefore allows the stress space friction

angle  to be related to the Mohr-space friction angle

 by

 (4.29)

You can similarly define a stress-space flow angle  by

 (4.30)

We will soon solve a particular fixed-axis plane stress Mohr-Coulomb problem three different

ways. In all three analyses, the material properties and the prescribed in-plane deformations will

be identical and the meridional non-associativity will be identical. The solutions will dramatically

differ, however, because three different flow rules will be used for the deviatoric non-associativ-

ity.

Flow direction for consistent nonassociativity. For consistent nonassociativity, the

unit tensor  in the direction of plastic flow is of the same form as Eq. 4.23 except with the fric-

tion angle  replaced by the dilatation angle :1

 (4.31)

Then Eq. __ gives

 (4.32)

where

and  (4.33)

Applying Eq. __ for linear elastic non-hardening  uncoupled  plasticity gives the

factor  needed to complete evaluation of the tangent stiffness tensor:

1. As seen in the upcoming example on page 64, this form for the plastic flow direction is fully non-associa-
tive. In the octahedral plane, it is not aligned with yield normal, nor is it radial.
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Figure 4.8. Meridional stress space. 
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 (4.34)

where

.  (4.35)

These may be used in Eq. 2.39 to obtain the out-of-plane strain rate , which may then be used in

Eqs. 2.25a and 2.25b to obtain the in-plane stresses for problems that are driven by prescribed in-

plane strains. Of course, during elastic legs, terms involving  and  are merely omitted.

Consistent non-normality computes the yield normal and flow directions by algebraically
identical formulas:

and .  (4.36)

The stress-space friction and dilatation angles,

and ,  (4.37)

allow the consistent normal and flow tensors to be written as

and  (4.38)

where

and  (4.39)

Here, the superscript  denotes the “deviatoric part.” For consistent non-associativity the unit ten-

sors  and  are not equal — they are computed in manners consistent with the meaning of the

friction angle and dilatation angle, respectively. 

Comparing the left and right sides of the above four equations shows that consistent non-asso-
ciativity uses the friction and dilatation angles in algebraically identical ways. For consistent non-
normality, the flow direction has a component perpendicular to the plane spanned by the yield
normal and the hydrostat, making .
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Flow direction for deviatoric associativity. The term “deviatoric associativity” means

that the flow tensor  and the yield normal  are nonparallel in the meridional plane, but they

are parallel in the octahedral plane. Hence, the flow tensor  and the yield normal  have paral-

lel deviatoric parts. For deviatoric associativity, the unit tensor  in Eq. 4.38 is replaced by the

unit tensor  from the yield normal in Eq. 4.38 so that

 (4.40)

This flow direction may be expressed directly in terms of the yield normal as

 (4.41)

This flow direction still forms the same angle with the hydrostat as it did in the fully non-associa-

tive case (Fig. 4.8), but it is associative in the octahedral plane. The deviatoric parts of  and 

are not equal — they are simply parallel. 

As with full associativity, the projection direction  tensor is still computed using Eq. __ 

 (4.42)

and the  factor that appears in the tangent stiffness is still given by

 (4.43)

The trace of the flow direction for deviatoric associativity is identical to what it was for consistent

non-associativity. Namely,

 (4.44)

Deviatoric associativity alters  by changing its deviatoric part, and it alters  by changing the

angle between  and , which is quantified by .

Flow direction for Drucker-Prager non-normality. Whereas deviatoric associativity
corresponds to replacing the deviatoric flow direction  in Eq. 4.38 with the deviatoric yield
direction , Drucker-Prager non-normality replaces  with a unit tensor in the direction of the
stress deviator. With consistent and deviatoric non-normality, a Mohr-Coulomb model retains the
property that large expanses of stress space have constant yield normals and flow directions,
which greatly simplifies analytical solutions. With Drucker-Prager non-normality, this attractive
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feature is lost, but it is nonetheless an important flow model to consider because many numerical
plasticity codes return the stress to the yield surface in such a way that the updated stress deviator
points in the same direction as the trial stress deviator, which (for linear elasticity) implies a
Drucker-Prager flow rule.



EXAMPLE 1 (consistent non-associativity)
Here we consider a Mohr-Coulomb elastoplasticity problem for which the in-plane strains are prescribed as func-

tions of time. The out-of-plane strain, as well as the in-plane stresses, are desired. Let the in-plane strains be piece-
wise linear as defined in Table 4.7. The material parameters are listed in Table 4.7.

To assist researchers to independently reproduce our analytical solution, two yield functions1 corresponding to
the above prescribed data are

 (4.45a)
,  (4.45b)

where

, ,  (4.46)

Table 4.7: Piecewise linear strain path

time

0 0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Table 4.8:  Mohr-Coulomb material parameters
(SI units)

Young’s modulus 31000

Poisson’s ratio 0.26

*bulk modulus 21527.78

*shear modulus 12301.59

*Lame constant 13326.72

Cohesion 15.7

friction angle 

dilatation angle 

1. Yield functions are not unique. This particular yield function is defined so that the coefficient of  will eval-
uate to 1.0 in triaxial compression . Eq. 4.45 represents the same function expressed in terms of 
principal stresses and in terms of cylindrical Lode coordinates.
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A flow potential whose gradient is parallel to the flow direction is

 (4.47a)
,  (4.47b)

The exact solution is graphed in Fig. 4.9. The corresponding exact solutions for the Lode
coordinates are shown in Fig. 4.10.

g L H 0.779917 H 0.476067 L–=
g r z r 0.888115 cos 0.124046 sin+ 0.175428 z+=
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11

Figure 4.9. Exact plane stress solution for the in-plane stress history and out-of-plane strain history
corresponding to the in-plane driving strains prescribed in Table 4.7.   The stress diagram shows the ana-
lytical solution (thick orange line) overlaid with a numerical solution (thin black line) from the Sandia
GeoModel [16].
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Figure 4.10. Exact solution for Lode coordinates.   In this manuscript, the Lode angle is de-
fined to be positive in triaxial extension (TXE) and negative in triaxial compression (TXC).
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The analytical solution of this problem must be broken into at least seven separate legs because the prescribed

strain path itself has seven legs. However, some of these legs must be further broken into sub-legs where part of the

interval is elastic and part is plastic. The exact solution is tabulated in Table 4.9. Each leg’s name ends in E or P to

indicate whether the leg (or sub-leg) is elastic or plastic. 

Table 4.9: Exact Solution (consistent non-associativity)

Leg end
time

reason for
ending leg

 ( )
at end

 ( )
at end

 ( )
at end at end at end

1E
(LLH)

0.1 change in
prescribed
strain rate

–0.8 –0.8 0.56216 –33.5135 –33.5135

2E
(MLH)

0.2 change in
prescribed
strain rate

0.3 –1.2 0.31622 –0.39897 –37.3037

3E
(MLH)

0.21719 yield 0.3 –1.68133 0.48533 –4.55972 –53.3066

3P
(MLH)

0.3 change in
prescribed
strain rate

0.3 –4.0 4.2839 –4.55972 –53.3066

4E
(MLH)

0.4 change in
prescribed
strain rate

–1.0 –3.5 4.56500 –43.4593 –47.9205

5E
(MLH)
(LMH)

0.408438 yield –1.32909 –3.37343 4.63614 –53.3066 –46.5770

5P
(LMH)

0.5 change in
prescribed
strain rate

–4.9 –2.0 9.54409 –53.3066 –3.9808

6E
(LMH)
(MLH)

0.585264 yield –4.04736 –3.70528 9.84366 –39.6995 –53.3066

6P
(MLH)

0.6 change in
prescribed
strain rate

–3.9 –4.0 10.2254 –35.1313 –53.3066

7E
(MLH)
(LMH)
(LHM)

0.69854 yield –3.9 –2.0292 9.53297 –18.0951 12.2175

7P
(LHM)

0.7 change in
prescribed
strain rate

–3.9 –2.0 9.52648 –17.5211 12.4166

11 10 3–
22 10 3–

33 10 3–
11 33



The eigenvalue ordering during each leg is shown in the first column. For example, the ordering MLH indicates

that , , and  are the middle, low, and high eigenvalues respectively. In leg 5E, the ordering of stress

eigenvalues for the elastic solution is initially MLH, but changes to LMH. Determining if a trial elastic solution is

valid requires carefully monitoring eigenvalue ordering. In this consistent associativity problem, the stresses fortu-

itously don’t change ordering during plastic legs, happily avoiding the need for vertex analysis.

A scaled meridional stress path is shown in Fig.
4.11. The stress moves through a full range of Lode
angles in this problem. To compensate for the fact
that meridional profiles of the yield surface are dif-
ferent at different Lode angles, Fig. 4.11 scales the
ordinate so that the local meridional limit coincides
with the TXC profile. By using this scaling, motion
of the stress relative to the yield surface is more
readily apparent.

For each plastic leg, , and Table 4.10
shows the unit normal to the yield surface , the
unit tensor  in the direction of plastic flow, where

, , , and
.The yield normal  and flow direction

 point in different directions on the meridional
plane (specifically the trace of  is smaller than the
trace of ). For consistent non-associativity, the 
and  tensors are also misaligned in the octahedral
plane, as indicated on page 64. To match this analyt-
ical solution, numerical schemes must use the con-
sistent flow direction. After showing a few of the

actual computations associated with Leg 5P of this example, we will solve this same problem
using two other flow rules that have the same non-normality on the meridional plane, but different
non-normality on the octahedral plane. Computations associated with the other plastic legs are
similar. 

11 22 33

I1

3
-------–

2J2*

Figure 4.11. Trajectory in stress space.
  The vertical axis of this meridional pro-

file is scaled to place the local meridional
profile (which varies with Lode angle) co-
incident with the TXC profile.

Table 4.10: Normal and flow directions

Leg

3P
(MLH)

5P
(LMH)

6P
(MLH)

7P
(LHM)

N
˜̃

M
˜̃

DIAG 0 NL NH DIAG 0 ML MH

DIAG NL 0 NH DIAG ML 0 MH

DIAG 0 NL NH DIAG 0 ML MH

DIAG NL NH 0 DIAG ML MH 0

26775.7=
N
˜̃M

˜̃NL 0.3278–= NH 0.9447= ML 0.521–=

MH 0.8535= N
˜̃M

˜̃ M
˜̃N

˜̃
N
˜̃M

˜̃



Detailed analysis of leg 5P. To illustrate how the normal and flow directions in this exact solu-

tion were determined (and then used to update stress and strain), we will consider Leg 5P. Analysis of the

elastic legs is conventional, and therefore will not be discussed. All of the plastic legs are similar to Leg 5,

so only this leg will be explained.1 Leg 5 begins elastic, but ends plastic. The elastic solution applies until

the yield criterion is reached at time . The stress and strain tensors (determined from

integration of the elasticity equations from  to ) at the onset of yield were found to

be

At , 
 (4.48a)

 (4.48b)

These serve as the initial conditions needed to integrate Eq. 2.25 through Leg 5P. The lion’s share

of the work is, of course, determining the tangent components of the  and  tensors that appear

in Eq. 2.25.

Equation 4.48a shows that the numerically smallest principal stress at time  is located in the first

position, whereas the largest principal stress is in the  position. The eigenprojectors are diagonal ten-

sors with a 1 marking the location of the associated eigenvalue:

and   (4.49)

The plastic part of leg 5 is solved by tentatively presuming that this eigenvalue ordering will be

preserved throughout the remainder of the leg. When the solution is complete, this assumption

will be shown to be satisfied. The projectors in Eq. 4.49 are substituted into the formulas for the

yield normal and flow direction (Eqs. 4.23 and 4.31) to obtain

 (4.50)

 (4.51)

The scalar  is computed by using Eq. 4.34 via the following sequence of calculations:

.  (4.52)

1. A Mathematica notebook that contains all of the necessary calculations is available upon request.
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 (4.53)

 (4.54)

= 

=  (4.55)

Applying Eqs. 4.24 and 4.32 gives

= 

=  (4.56)

= 

=  (4.57)

The prescribed (in-plane) strains are piecewise linear functions of time. Therefore, the strain rate

is piecewise constant. During Leg 5, Table 4.7 implies that the in-plane strain rates are

 (4.58)

 (4.59)

Using Eq. 2.39, the rate of out-of-plane strain is therefore given by

= 

=  (4.60)

Hence, the strain rate tensor during Leg 5P (i.e., ) is
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  (4.61)

This strain rate is constant for because the in-plane strain rates are both constant throughout leg 5

and because the  and  tensors themselves will remain constant as long as the stress eigenvalue

ordering is preserved. The domain of validity of Eq. 4.60 would end if a triaxial state develops

before the end of Leg 5, but we will show that no eigenvalue re-ordering occurs on the interval

. Hence the constant strain rate in Eq. 4.61 applies through the end of Leg 5.

The out-of-plane stress rate is, by design, zero. The constant in-plane stress rates during this interval

are obtained by substituting Eq. 4.60 into 2.25a and 2.25b to give

 (4.62)

Hence, the linear time-varying stress and strains after yield are

 (4.63)

 (4.64)

where the initial states,  and  are specified in Eq. 4.48. The eigenvalue ordering associ-

ated with this solution remains unchanged throughout the interval from . Conse-

quently, it is valid through the end of Leg 5.
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EXAMPLE 2 (deviatoric associativity)
Here we consider the same Mohr-Coulomb elastoplas-

ticity problem, but this time the flow rule is replaced by
deviatoric associativity. The in-plane strains and material
parameters are identical to those defined in Tables 4.7. and
4.8. 

For deviatoric associativity, the dilatation angle  from
Table 4.8 is used in Eq. 4.30 to compute a stress-space
angle  that is identical to the stress-space angle for con-
sistent non-associativity. Consistent non-associativity applies Eq. 4.38 to compute the flow direc-
tion, but deviatoric associativity uses Eq. 4.40, which makes the deviatoric parts of the flow
direction and yield normal parallel. The angle between the flow direction and the hydrostat
remains as it was in the consistent non-associativity case. Other than this, the yield models are
identical. As we will soon see, this small change leads to dramatic differences in the stress
response. 

The yield function corresponding to the material data in Tables 4.7 is identical to what it was
in the consistent non-associativity problem:

 (4.65a)
,  (4.65b)

However, the flow potential for deviatoric associativity changes to

 (4.66a)
 (4.66b)

Unlike Eq. 4.47 for consistent non-associativity, the flow potential for deviatoric associativity in

Eq. 4.66 depends on the middle eigenvalue even though the yield function itself does not.

The change in the flow rule results in plastic loading at vertex states. The exact solution for
this new problem is shown in Table 4.11. Each leg’s name ends in E, PF, or PV to indicate
whether the leg (or sub-leg) is elastic, plastic on a yield surface flat, or plastic at a yield vertex.
After presenting this exact solution in tabular and graphical form, we will clarify some of the
details of the solution procedure by showing the calculations for the plastic part of Leg 3. The
eigenvalue ordering indicated the first column of Table 4.9 following the same notation as used in
Example 1.
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Table 4.11: Exact Solution (deviatoric associativity)

Leg end
time

reason for
ending leg

 ( )
at end

 ( )
at end

 ( )
at end at end at end

1E
(LLH)

0.1 change in
prescribed
strain rate

–0.8 –0.8 0.56216 –33.5135 –33.5135

2E
(MLH)

0.2 change in
prescribed
strain rate

0.3 –1.2 0.31622 –0.39897 –37.3037

3E
(MLH)

0.21719 yield 0.3 –1.68133 0.48533 –4.55972 –53.3066

3PF
(MLH)

0.239175 vertex 0.3 –2.2969 1.53999 0 –53.3066

3PV
(HLH)

0.3 change in
prescribed
strain rate

0.3 –4.0 4.33009 0 –53.3066

4E
(MLH)

0.4 change in
prescribed
strain rate

–1.0 –3.5 4.61117 –38.8996 –47.9205

5E
(MLH)
(LMH)

0.412345 yield –1.48147 –3.31482 4.71528 –53.3066 –45.9257

5PF
(LMH)

0.475692 vertex –3.95198 –2.36462 8.27765 –53.3066 0

5PV
(LHH)

0.5 change in
prescribed
strain rate

–4.9 –2.0 9.46613 –53.3066 0

6E
(LMH)
(MLH)

0.592145 yield –3.97855 –3.8429 9.78988 –38.6013 –53.3066

6PF
(MLH)

0.6 change in
prescribed
strain rate

–3.9 –4.0 10.0036 –35.1540 –53.3066

7E
(MLH)
(LMH)
(LHM)

0.698527 yield –3.9 –2.02946 9.31127 –18.1199 12.2089

7PF
(LHM)

0.7 change in
prescribed
strain rate

–3.9 –2.0 9.30179 –17.6151 12.384

11 10 3–
22 10 3–

33 10 3–
11 33



The exact solution is graphed in Fig. 4.9. The corresponding exact solutions for the Lode
coordinates are shown in Fig. 4.10. The first leg is biaxial compression, which is a form of triaxial
extension (Lode angle ) because it tends to increase the length to diameter ratio of axisym-
metric specimens.

This concludes our presentation of the exact solution. We will now provide some details of the
analysis by showing the actual computations associated with Leg 3. Computations associated with
the other plastic legs are similar.
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Figure 4.12. Exact plane stress solution for the in-plane stress history and out-of-plane strain history
corresponding to the in-plane driving strains prescribed in Table 4.7.   The stress diagram shows the ana-
lytical solution (thick orange line) overlaid with a numerical solution (thin black line) from the Sandia
GeoModel [16].
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Figure 4.13. Exact solution for Lode coordinates.   In this manuscript, the Lode angle is de-
fined to be positive in triaxial extension (TXE) and negative in triaxial compression (TXC).
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Detailed analysis of leg 3. To illustrate how this problem was solved,
we will consider Leg 3, which is responsible for the odd-looking “hook” in the
stress plot of Fig. 4.12. Leg 3 begins at time  and ends at time . After
analyzing legs 1 and 2 (both of which are entirely elastic), the initial state (at
time ) for Leg 3 is

 (4.67a)

 (4.67b)

Throughout Leg 3, the prescribed in-plane strain rates are

and  (4.68)

Of course, for plane stress, the  and therefore

 (4.69)

The unknowns in the analysis are , , and . This leg, we will show, begins elastically, loads

plastically on a single yield plane, and then finishes at a yield vertex.

When the stress is away from vertices, the exact solution during plastic loading is found by applying

Eq. (2.39) to obtain  and then Eqs. (2.25a) and (2.25b) for  and :

 (4.70a)

 (4.70b)

 (4.70c)

The yield surface normal is parallel to the yield function gradient,

 (4.71)

Here,  is the unit “eigenprojector” tensor that equals zero in every component except for a 1 at

the location of the lowest principal stress. The eigenprojector  similarly demarks the location of

the highest principal stress. Using Eq. (4.65) to compute the yield function derivatives in Eq.

(4.71), and then normalizing the result gives the formula for the unit normal of the yield surface:

 (4.72)

Similarly, the unit tensor parallel to the plastic flow direction is

 (4.73)

Leg 3

Figure 4.14. Leg 3. 
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The  and  tensors equal the elastic stiffness operating on and  respectively. Hence,

and  (4.74)

Of course . The trace is, as usual, the sum of diagonal components, so it is unaf-

fected by eigenvalue ordering. Therefore, substituting Eqs. 4.72 and 4.73 into 4.74 gives

 (4.75a)

 (4.75b)

Regardless of eigenvalue ordering, the  scalar is given by

 (4.76)

Trial elastic solution (valid until the yield function becomes positive)

As usual, the analysis begins by assuming elasticity. During elastic loading, the solution is obtained by

evaluating Eq. 4.70, with the ’s set to zero:

 (4.77a)

 (4.77b)

 (4.77c)

These constant rates apply during the entirety of the elastic loading phase. Therefore integrating these

rates using the initial conditions in Eq. 4.67 gives the time varying solution:

 (4.78a)
 (4.78b)
 (4.78c)
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·
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·
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·
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·
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A plot of the time varying solution is shown in

Fig. 4.15, where it is evident that the eigenvalue

ordering is

,  ,   (4.79)

Substituting these into Eq. (4.65) gives the

time-varying value of the yield function:

The yield function is negative from the start

time, , up until the yield time

.

The trial elastic solution in Eq. 4.78 is therefore valid up through the yield time.

Single surface plasticity solution (valid until the stress reaches a yield vertex)

The initial state for the plastic loading leg is obtained by evaluating Eq. (4.78) at :

 (4.80a)

 (4.80b)

The eigenvalues of the stress are initially all distinct, which means that the state is not initially at a

yield surface vertex. Therefore, the single-surface plasticity solution in Eq. (4.70) either through

the end of the leg or until a vertex is reached (where eigenvalue ordering changes). Because the

high stress eigenvalue is , the eigenprojector  is zeros everywhere except a 1 in the 33 com-

ponent. Because the middle eigenvalue is , the eigenprojector  has a 1 in the 11 component

and zeros elsewhere. Similarly, because  is the low eigenvalue,  has a 1 in the 22 location. To

summarize,

, ,  (4.81)

Using, respectively, Eqs. (4.73) and (4.72), the unit flow direction and yield normal are

Figure 4.15. Trial elastic solution for leg 3.   This
solution is valid until time  when the yield func-
tion becomes zero.
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 (4.82a)

 (4.82b)

Using Eq. (4.75), the  and  tensors are

 (4.83a)

 (4.83b)

The  scalar is given by

 (4.84)

Of course, the prescribed strain rates  and  are the same as they were during the elastic leg.

Hence, applying Eqs. (4.70), the single-surface plasticity solution, valid after time , is

= 

=  (4.85a)

 (4.85b)

 (4.85c)

These rates may be integrated through time using Eq. (4.80) as the initial condition. The resulting

stress histories, shown in Fig. 4.16, reveal that two eigenvalues become equal at time

, which marks the point at which this solution is no longer valid. If you (wrongly)

presumed the solution in Fig. 4.16 valid beyond the swap time, then you would find that it violates

the yield condition (i.e., it produces stress states for which ).

M
˜̃ 0.4638– e

˜̃L 0.1182– e
˜̃M 0.8780 e

˜̃H+ + DIAG 0.1182– 0.4638– 0.8780= =

N
˜̃ 0.3278– e

˜̃L 0.9447 e
˜̃H+ DIAG 0 0.3278– 0.9447= =

P
˜̃

Q
˜̃

P
˜̃ 7466.2– e

˜̃L 1037.8 e
˜̃M 25547.1 e

˜̃H+ + DIAG 1037.8 7466.2– 25547.1= =

Q
˜̃

156.86– e
˜̃L 8221.8 e

˜̃M 31465.6 e
˜̃H+ + DIAG 8221.8 156.86– 31465.6= =

N
˜̃ :
P
˜̃ 26583= =

·
1

·
2

t tyield=

·
3

·
1

·
2+ 1---P3 Q1

·
1 Q2

·
2+–

1---P3Q3 2G +–
------------------------------------------------------------------------------=

13327 0 0.028– 1
26583
--------------- 25547.1 8221.8 0 156.86– 0.028–+–

1
26583
--------------- 25547.1 31465.6 37930–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

0.04797
·

1 2G ·
1

·
1

·
2

·
3+ + 1---P1 Q1

·
1 Q2

·
2 Q3

·
3+ +–+ 207.4= =

·
2 2G ·

2
·
1

·
2

·
3+ + 1---P2 Q1

·
1 Q2

·
2 Q3

·
3+ +–+ 0.00= =

tswap 0.2392=

f 0



Demonstrating that the stress does not move past the vertex

The stress is at a vertex when two stress eigenvalues become equal (and the stress is at yield). Two pos-

sibilities exist: either the stress will dwell at the vertex, or it will move beyond the vertex into a different

yield surface flat. If the total strain rate were known, determining which one of these two possibilities

applies would be a simple matter of using STEP __ of the vertex instructions on page __ of the Radial

Return monograph. Unfortunately, however, the trial stress rate is not the same as the stress rate found ear-

lier during the elastic leg of this solution, which enforced the plane-stress boundary condition. The trial

stress rate in the vertex instructions must equal the stiffness operating on the total strain rate, but the out-

of-plane strain rate  is not known for this problem. To get around this issue, one must tentatively assume

that the stress will pass beyond the vertex. Then a single-surface plasticity analysis is performed similar to

what was shown above except with  and  trading roles. The resulting solution is easily shown to vio-

late the yield condition. Hence, the only remaining possibility is two-surface vertex analysis.

Given that the trial stress rate must point into the Koiter fan, apply two-surface vertex theory.

Figure 4.16. Single-surface plasticity solution ap-
plicable from the onset of yield until the eigenvalues
swap ordering. 
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To find the stress solution beyond , we must obtain the tangent stiffness tensor in STEP __ of

the vertex instructions in the Radial Return document:

 (4.86)

For fixed-axes loading, this fourth-order tensor may be recast as a  matrix. Of course, for

fixed-axes loading, the elastic stiffness is

 (4.87)

Computing the last term in Eq. 4.86 is the most difficult part of vertex analysis.

According to STEP __ of the vertex instructions, the  matrix (which is analogous to the  parameter

used in single-surface plasticity) is given by

 (4.88)

This is a non-hardening yield problem, so the ensemble hardening moduli  have been set to

zero. The vertex for this problem is the one where the high and middle eigenvalues swap places. It

is a triaxial extension (TXE) vertex. In the single-surface solution derived earlier, the high and

middle eigenvalues were located in the first and third positions of the stress array. The first active

yield normal is the one that applied before . The second active yield normal is the same

except with the first and third components exchanged:

and  (4.89)

Likewise, the two active projection direction tensors are

and  (4.90)

and the two active Q-tensors are

and  (4.91)

Applying Eq. 4.88, 
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 (4.92)

whose inverse is

 (4.93)

Incidentally, this  matrix happens to be symmetric and have equal diagonal components only

because of the nice symmetries of the Mohr-Coulomb model. For more general vertices (such as

found in two-surface cap plasticity), the  matrix can potentially have all distinct components.

Computing the last term in Eq. (4.86) requires recognizing that each  is a dyadic multiplication.

For fixed axes loading, the result can be saved as a  matrix whose  component is given by

. For example,

= 

=  (4.94)

Continuing similarly, to compute all of the terms in the double sum of Eq. 4.86, the tangent stiff-

ness tensor is ultimately found to be

 (4.95)

The governing equation,

,  (4.96)
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can be written as a  system in which there are three unknowns, , , and . Specifically,

we know for plane stress that . During this leg, we also know that  and

. Therefore, the matrix form of Eq. (4.96) is

 (4.97)

Solving this system for the unknowns gives the final solution:

, , and  (4.98)

In other words, once the vertex has been reached, the stress remains constant. This result is not as

self-evident as one might think — vertex loading on a TXE vertex requires only that the stress

must remain TXE, but it does not require the stress to remain constant (in general, the pressure

can change even though it remained constant for this particular example). The out-of-plane strain

component grows over time at a faster rate than it did during the single-surface plastic loading

phase. To summarize, Fig. 4.17 shows the combined three-stage histories of the stress and strain

applicable over leg 3.

This concludes our detailed analysis of Leg 3. Other legs are analyzed similarly.
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Figure 4.17. Stress and strain histories over leg 3. 
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