Publication: Application of Uintah-MPM to shaped charge jet penetration of aluminum

J. Burghardt, B. Leavy, J. Guilkey, Z. Xue, R. Brannon

The capability of the generalized interpolation material point (GIMP) method in simulation of penetration events is investigated. A series of experiments was performed wherein a shaped charge jet penetrates into a stack of aluminum plates. Electronic switches were used to measure the penetration time history. Flash x-ray techniques were used to measure the density,length, radius and velocity of the shaped charge jet. Simulations of the penetration event were performed using the Uintah MPM/GIMP code with several different models of the shaped charge jet being used. The predicted penetration time history for each jet model is compared with the experimentally observed penetration history. It was found that the characteristics of the predicted penetration were dependent on the way that the jet data are translated to a discrete description. The discrete jet descriptions were modified such that the predicted penetration histories fell very close to the range of the experimental data. In comparing the various discrete jet descriptions it was found that the cumulative kinetic energy flux curve represents an important way of characterizing the penetration characteristics of the jet. The GIMP method was found to be well suited for simulation of high rate penetration events.

Available Online:

http://iopscience.iop.org/1757-899X/10/1/012223
http://www.mech.utah.edu/~brannon/pubs/7-2010BurghardtLeavyGuilkeyXueBrannon_ApplicMPMshapedCharge.pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s