Publication: Experimental Assessment of Unvalidated Assumptions in Classical Plasticity Theory

R. Brannon, J.A. Burghardt, D. Bronowski, and S. Bauer

Common isotropic yield surfaces. Von Mises and Drucker-Prager models are often used for metals. Gurson’s function, and others like it, are used for porous media. Tresca and Mohr-Coulomb models approximate the yield threshold for brittle media. Fossum’s model, and others like it, combine these features to model realistic geological media.

This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data,thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

Available Online:

http://www.mech.utah.edu/~brannon/pubs/7-BrannonBurghardtSAND-Report2009-0351.pdf

http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=948711

Publication: On a viscoplastic model for rocks with mechanism-dependent characteristic times

A. F. Fossum and R. M. Brannon

Rate Dependance

This paper summarizes the results of a theoretical and experimental program at Sandia National Laboratories aimed at identifying and modeling key physical features of rocks and rock-like materials at the laboratory scale over a broad range of strain rates. The mathematical development of a constitutive model is discussed and model predictions versus experimental data are given for a suite of laboratory tests. Concurrent pore collapse and cracking at the microscale are seen as competitive micromechanisms that give rise to the well-known macroscale phenomenon of a transition from volumetric compaction to dilatation under quasistatic triaxial compression. For high-rate loading, this competition between pore collapse and microcracking also seems to account for recently identified differences in strain-rate sensitivity between uniaxial-strain ‘‘plate slap’’ data compared to uniaxial-stress Kolsky bar data. A description is given of how this work supports ongoing efforts to develop a predictive capability in simulating deformation and failure of natural geological materials, including those that contain structural features such as joints and other spatial heterogeneities.

Available Online:

http://www.mech.utah.edu/~brannon/pubs/7-2006FossumBrannonMechanismDependentViscoplasticity.pdf

 

Publication: Initial inclusion of thermodynamic considerations in Kayenta

T.J. Fuller, R.M. Brannon, O.E. Strack, J.E. Bishop

Displacement profile for Thermo-Kayenta at the end of the simulation. the red dots represent the experimental profiles

A persistent challenge in simulating damage of natural geological materials, as well as rock-like engineered materials, is the development of efficient and accurate constitutive models.The common feature for these brittle and quasi-brittle materials are the presence of flaws such as porosity and network of microcracks. The desired models need to be able to predict the material responses over a wide range of porosities and strain rate. Kayenta [1] (formerly called the Sandia GeoModel) is a unifi ed general-purpose constitutive model that strikes a balance between rst-principles micromechanics and phenomenological or semi-empirical modeling strategies. However, despite its sophistication and ability to reduce to several classical plasticity theories, Kayenta is incapable of modeling deformation of ductile materials in which deformation is dominated by dislocation generation and movement which can lead to signi cant heating. This stems from Kayenta’s roots as a geological model, where heating due to inelastic deformation is often neglected or presumed to be incorporated implicitly through the elastic moduli.The sophistication of Kayenta and its large set of extensive features, however, make Kayenta an attractive candidate model to which thermal eff ects can be added. This report outlines the initial work in doing just that, extending the capabilities of Kayenta to include deformation of ductile materials, for which thermal e ffects cannot be neglected. Thermal e ffects are included based on an assumption of adiabatic loading by computing the bulk and thermal responses of the material with the Kerley Mie-Gruneisen equation of state and adjusting the yield surface according to the updated thermal state. This new version of Kayenta, referred to as Thermo-Kayenta throughout this report, is capable of reducing to classical Johnson-Cook plasticity in special case single element simulations and has been used to obtain reasonable results in more complicated Taylor impact simulations in LS-Dyna. Despite these successes, however, Thermo-Kayenta requires additional re nement for it to be consistent in the thermodynamic sense and for it to be considered superior to other, more mature thermoplastic models. The initial thermal development, results, and required refinements are all detailed in the following report.

Available Online:

http://www.mech.utah.edu/~brannon/pubs/7-2010FullerBrannonStrackBishopThermodynamicsInKayenta.pdf

Publication: KAYENTA: Theory and User’s Guide

R.M. Brannon, A.F. Fossum, and O.E. Strack

Kayenta continuous yield surface. (a) three-dimensional view in principal stress space, (b) the meridional “side” view (thick line), and (c) the octahedral view

The physical foundations and domain of applicability of the Kayenta constitutive model are presented along with descriptions of the source code and user instructions. Kayenta, which is an outgrowth of the Sandia GeoModel, includes features and fitting functions appropriate to a broad class of materials including rocks, rock-like engineered materials (such as concretes and ceramics),and metals. Fundamentally, Kayenta is a computational framework for generalized plasticity models. As such, it includes a yield surface, but the term“yield” is generalized to include any form of inelastic material response including microcrack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated with ubiquitous joint sets. Kayenta support optional deformation-induced anisotropy through kinematic hardening (inwhich the initially isotropic yield surface is permitted to translate in deviatoric stress space to model Bauschinger effects). The governing equations are otherwise isotropic. Because Kayenta is a unification and generalization of simple models, it can be run using as few as 2 parameters (for linear elasticity) to as many as 40 material and control parameters in the exceptionally rare case when all features are used. For high-strain-rate applications, Kayenta support rate dependence through an overstress model. Isotropic damage is model through loss of stiffness and strength.

Available Online:
http://www.mech.utah.edu/~brannon/pubs/7-2009Kayenta_Users_Guide.pdf
http://dx.doi.org/10.1111/j.1744-7402.2010.02487.x

Publication: A multi-stage return algorithm for solving the classical damage component of constitutive models for rocks, ceramics, and other rock-like media

R. M. Brannon and S. Leelavanichkul

Octahedral isosurfaces for a) the unacceptable, b) the admissible, and c) the admissible

Classical plasticity and damage models for porous quasi-brittle media usually suffer from mathematical defects such as non-convergence and nonuniqueness.Yield or damage functions for porous quasi-brittle media often have yield functions with contours so distorted that following those contours to the yield surface in a return algorithm can take the solution to a false elastic domain. A steepest-descent return algorithm must include iterative corrections; otherwise,the solution is non-unique because contours of any yield function are non-unique. A multi-stage algorithm has been developed to address both spurious convergence and non-uniqueness, as well as to improve efficiency. The region of pathological isosurfaces is masked by first returning the stress state to the Drucker–Prager surface circumscribing the actual yield surface. From there, steepest-descent is used to locate a point on the yield surface. This first-stage solution,which is extremely efficient because it is applied in a 2D subspace, is generally not the correct solution,but it is used to estimate the correct return direction.The first-stage solution is projected onto the estimated correct return direction in 6D stress space. Third invariant dependence and anisotropy are accommodated in this second-stage correction. The projection operation introduces errors associated with yield surface curvature,so the two-stage iteration is applied repeatedly to converge. Regions of extremely high curvature are detected and handled separately using an approximation to vertex theory. The multi-stage return is applied holding internal variables constant to produce a non-hardening solution. To account for hardening from pore collapse (or softening from damage), geometrical arguments are used to clearly illustrate the appropriate scaling of the non-hardening solution needed to obtain the hardening (or softening) solution.

For errata (transcription errors in two of the verification solutions), please see:
https://csmbrannon.net/2015/07/12/errata-for-two-verification-publications/

Available Online:
http://www.mech.utah.edu/~brannon/pubs/7-2009BrannonLeelavanichkul-IJF.pdf
http://dx.doi.org/10.1007/s10704-009-9398-4

Merits and shortcomings of conventional smeared damage models

Initial teardrop yield and third-invariant limit surfaces in the Kayenta model

Four classical damage models for concrete (three of which are available in commercial codes) have been compared and critiqued, showing that they all share the notions of a “teardrop” yield surface that can harden and (for some models) translate until reaching a three-invariant fracture limit surface that then collapses to account for softening (i.e., permanent loss of strength).   Practical engineering models for rock and ceramics are similar.  The common drawbacks of these models (primarily severe mesh dependence) can be mitigated, though not eliminated, by seeding their material properties in the simulation with spatial variability (aleatory uncertainty) and by using appropriate scale effects for the strength and failure progression properties. Continue reading

Powder metal jet penetration into stressed rock

The Uintah computational framework (UCF) has been adopted for simulation of shaped charge jet penetration and subsequent damage to geological formations.  The Kayenta geomechanics model, as well as a simplified model for shakedown simulations has been  incorporated within the UCF and is undergoing extensive development to enhance it to account for fluid in pore space.

A generic penetration simulation using Uintah

The host code (Uintah) itself has been enhanced to accommodate  material variability and scale effects. Simulations have been performed that import flash X-ray data for the velocity and geometry of a particulated metallic jet so that uncertainty about the jet can be reduced to develop predictive models for target response.  Uintah’s analytical polar decomposition has been replaced with an iterative algorithm to dramatically improve accuracy under large deformations. Continue reading

Publication: On a viscoplastic model for rocks with mechanism-dependent characteristic times

A.F. Fossum and R.M. Brannon (2006)

This paper summarizes the results of a theoretical and experimental program at Sandia National Laboratories aimed at identifying and modeling key physical features of rocks and rock-like materials at the laboratory scale over a broad range of strain rates. The mathematical development of a constitutive model is discussed and model predictions versus experimental data are given for a suite of laboratory tests. Concurrent pore collapse and cracking at the microscale are seen as competitive micromechanisms that give rise to the well-known macroscale phenomenon of a transition from volumetric compaction to dilatation under quasistatic triaxial compression. For high-rate loading, this competition between pore collapse and microcracking also seems to account for recently identified differences in strain-rate sensitivity between uniaxial-strain ‘‘plate slap’’ data compared to uniaxial-stress Kolsky bar data. A description is given of how this work supports ongoing efforts to develop a predictive capability in simulating deformation and failure of natural geological materials, including those that contain structural features such as joints and other spatial heterogeneities.

Available online:

http://dx.doi.org/10.1007/s11440-006-0010-z
http://www.mech.utah.edu/~brannon/pubs/7-2006FossumBrannonMechanismDependentViscoplasticity.pdf

Publication: Experimental Assessment of Unvalidated Assumptions in Classical Plasticity Theory

Abstract: This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

You may download the full report here.